Connect with us

science

L’étude révèle comment de nouvelles cellules rejoignent les tissus existants en lisant des informations mécaniques

Published

on

L’étude révèle comment de nouvelles cellules rejoignent les tissus existants en lisant des informations mécaniques

L’intégration n’est pas seulement un problème d’importance sociale parmi les humains, mais aussi un problème pour les cellules qui nous composent en tant qu’êtres humains. L’ajout de nouvelles cellules à une population cellulaire déjà établie est essentiel pour la formation des organes au cours du développement normal, mais le même mécanisme est souvent détourné par les cellules cancéreuses lorsqu’elles se propagent dans d’autres cellules. Une nouvelle étude multidisciplinaire révèle comment de nouvelles cellules rejoignent les tissus en lisant les informations mécaniques des tissus voisins. Ils utilisent des doigts cellulaires appelés filopodes pour toucher les cellules adjacentes afin d’ouvrir la couche cellulaire. L’étude a été publiée dans Communication Nature.

Les nouvelles cellules utilisent des structures en forme de doigts pour ouvrir la couche de cellules hôtes

Pour comprendre comment les nouvelles cellules s’intègrent dans la couche cellulaire, le groupe de scientifiques s’est concentré sur la formation de couches cellulaires dans une couche cellulaire. Les cellules de grenouille partagent de nombreuses propriétés avec les cellules humaines, elles sont donc utiles pour ce type de recherche.

Au cours du développement fœtal, cette population cellulaire multicouche est réarrangée à mesure que de nouvelles cellules se déplacent d’un tissu à l’autre. Ce processus doit se produire avec une précision précise afin que chaque cellule entrante soit correctement positionnée.

Des micrographies à haute résolution ont montré que les cellules afférentes étendent des structures en forme de doigts vers la couche cellulaire sur laquelle elles reposent.

Des analyses détaillées des expériences combinées au modèle théorique ont révélé que les cellules afférentes utilisent des extensions en forme de doigts pour rétracter les têtes de la couche hôte, principalement pour vérifier si elles peuvent ouvrir la tête et s’insérer.

READ  Comment éviter les douleurs mammaires en courant

Amin Dost Mohammadi, professeur associé et responsable du Smart Active Matter Group à l’Institut Niels Bohr, explique comment cela fonctionne :

« Nous avons trouvé un certain complexe protéique qui s’accumule dans la tête et permet aux doigts des cellules entrantes d’établir un contact physique avec la tête. Comme les cellules entrantes qui étirent leurs bras au hasard pour voir où elles peuvent se fixer. »

Les modèles physiques prédisent le comportement des tissus vivants

Nous nous sommes ensuite tournés vers un modèle informatique physique de la couche cellulaire pour voir si nous pouvions prédire quels sommets seraient les plus sensibles à ces forces de traction. Ces points reliant quatre cellules ou plus sont plus susceptibles de s’ouvrir que les points reliant trois cellules.


Amin Dost Mohammadi, professeur adjoint

Une tendance similaire a été observée dans les expériences, confirmant les prédictions théoriques et montrant que les cellules déjà entrantes utilisent des forces de traînée pour trouver les points les plus faibles de la couche hôte pour s’insérer. »

Les expériences physiques et biologiques vont de pair

Les chercheurs ont utilisé un modèle physique très simple d’un réseau de sommets reliés entre eux par des arêtes comme alternative au réseau complexe formé par les cellules (voir exemple vidéo).

« Avec ce modèle simple, nous pouvons ensuite tester différents types de têtes. Nous pouvons tirer dessus pour simuler les forces d’attraction exercées par les nouvelles cellules, et nous pouvons vérifier la tension que peuvent supporter les têtes de tension et si elles peuvent réellement s’ouvrir. » par conséquent. »

READ  Un avion de la NASA "touche" le soleil pour la première fois et plonge dans l'atmosphère

C’était vraiment une discussion entre modèle et expériences, physique et biologie : concevoir un modèle simple, le modifier pour représenter au mieux les éléments clés d’une expérience, puis faire des prédictions qui ont été vérifiées par des expériences. »

Les cellules entrantes créent leurs propres emplacements dans les couches de cellules existantes

Cependant, à ce stade, il n’était pas clair comment ces points faibles étaient apparus en premier lieu. « Lorsqu’il n’y a pas de cellule entrante, il y a très peu de points faibles dans la couche de cellules et la plupart des sommets ne connectent que trois cellules ensemble. À notre grande surprise, nous avons réalisé qu’exactement lorsque les cellules entrantes s’approchent d’une couche de cellules, il y a un grand nombre de connecter des sommets qui apparaissent quatre ou cinq cellules, ce qui suggère que les cellules afférentes elles-mêmes peuvent peut-être influencer la formation de vulnérabilités dans la couche cellulaire supérieure », explique Amin Dostmohammadi.

La mécanique dirige l’intégration des cellules

Ces nouvelles découvertes mettent en évidence l’importance des informations mécanistes dans la direction du mouvement cellulaire au cours du développement embryonnaire et permettent de mieux comprendre comment les structures en forme de doigts (pattes filamenteuses), une caractéristique commune aux crabes envahisseurs, sont utilisées pour détecter les cellules voisines.

« C’est incroyable de voir à quel point tout ce processus est mécanique. Les cellules n’ont pas de cerveau ni de mécanisme de prise de décision. Il est donc fascinant de découvrir comment les cellules entrantes extraient, détectent et sélectionnent très précisément les points faibles d’une couche cellulaire existante. et, si l’environnement est défavorable, faites-le. » Les cellules modifient le calque et s’insèrent », ajoute Amin Dostmohammadi.

READ  Astronaute dans les catastrophes climatiques pour 2021

« La compréhension acquise grâce à la découverte des mécanismes d’entrée dans les cellules a des implications dans les situations où des cellules indésirables, telles que les cellules cancéreuses, envahissent une couche cellulaire. Cette compréhension est une condition préalable au développement de thérapies post-traitement. »

Combinant les domaines de la physique théorique et de la biologie du développement, c’est le résultat d’une équipe internationale de scientifiques du Niels Bohr Institute (NBI), du Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) et du Max Planck Center for the Physics of Systèmes vivants (MPI-PKG).

Source:

Référence de la revue :

Ventura, v. et coll. (2022) utilisent des filopodes multicellulaires pour examiner la mécanique des tissus lors de l’intégration épithéliale in vivo. Communication Nature. doi.org/10.1038/s41467-022-34165-0.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Les contractions cellulaires conduisent à la formation initiale des embryons humains

Published

on

Chez l’humain, le compactage des cellules embryonnaires constitue une étape cruciale dans le développement normal du fœtus. Quatre jours après la fécondation, les cellules se rapprochent pour donner à l'embryon sa forme initiale. Une compression défectueuse empêche la formation de la structure qui garantit l’implantation de l’embryon dans l’utérus. dans Technologie de procréation assistée (ART)Cette étape est soigneusement surveillée avant l’implantation de l’embryon.

Équipe de recherche multidisciplinaire1 Menés par des scientifiques de l'unité de génétique et biologie du développement de l'Institut Curie (CNRS/Inserm/Institut Curie) étudiant les mécanismes qui jouent un rôle dans ce phénomène encore méconnu, ils ont fait une découverte surprenante : le stress fœtal humain est provoqué par la contraction de cellules fœtales. cellules. Ainsi, les problèmes de pression sont dus à un défaut de contractilité de ces cellules, et non à un manque d’adhésion entre elles, comme on le supposait auparavant. Ce mécanisme a déjà été identifié chez les mouches, le poisson zèbre et la souris, mais il s'agit du premier du genre chez l'homme.

En améliorant notre compréhension des premiers stades du développement fœtal humain, l’équipe de recherche espère contribuer à améliorer le traitement antirétroviral, car environ un tiers des inséminations échouent aujourd’hui.2

Les résultats ont été obtenus en cartographiant les tensions superficielles des cellules embryonnaires humaines. Les scientifiques ont également testé les effets de l’inhibition de la contractilité et de l’adhésion cellulaire, et ont analysé la signature mécanique des cellules embryonnaires présentant une contractilité défectueuse.

Remarques: 1– Des scientifiques des entités suivantes ont également participé à l'étude : le Centre interdisciplinaire de recherche en biologie (CNRS/Collège de France/Inserm), le Département de biologie de la reproduction – CECOS (AP-HP), et l'Institut Cochin (CNRS). ) /Inserm/Université de la Ville de Paris).

READ  L'étude montre comment l'apprentissage automatique peut faire des prédictions

2–Source : Agence Biomédicale

Continue Reading

science

La mission XRISM de la NASA/JAXA capture des données sans précédent avec seulement 36 pixels

Published

on

La mission XRISM de la NASA/JAXA capture des données sans précédent avec seulement 36 pixels

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

source fiable

Relecture

La structure carrée au centre de cette image montre le réseau de microcalorimètres de 6 x 6 pixels au cœur de Resolve, un instrument de XRISM (X-ray Imaging and Spectroscopy Mission). Le réseau mesure 0,2 pouces (5 mm) sur le côté. L’appareil produit un spectre de source de rayons X compris entre 400 et 12 000 MeV – jusqu’à 5 000 fois l’énergie de la lumière visible – avec des détails sans précédent. Crédit image : NASA/XRISM/Carolyn Kilburn

× Fermer

La structure carrée au centre de cette image montre le réseau de microcalorimètres de 6 x 6 pixels au cœur de Resolve, un instrument de XRISM (X-ray Imaging and Spectroscopy Mission). Le réseau mesure 0,2 pouces (5 mm) sur le côté. L’appareil produit un spectre de source de rayons X compris entre 400 et 12 000 MeV – jusqu’à 5 000 fois l’énergie de la lumière visible – avec des détails sans précédent. Crédit image : NASA/XRISM/Caroline Kilburn

À une époque où les caméras des téléphones sont capables de prendre des instantanés avec des millions de pixels, un instrument du satellite XRISM (X-ray Imaging and Spectroscopy Mission) dirigé par le Japon prend des images scientifiques révolutionnaires en utilisant seulement 36 d'entre eux.

« Cela peut sembler impossible, mais c'est en réalité vrai », a déclaré Richard Kelly, chercheur principal américain pour XRISM au Goddard Space Flight Center de la NASA à Greenbelt, dans le Maryland. « Resolve nous donne un aperçu plus approfondi de la formation et du mouvement des objets émettant des rayons X à l'aide d'une technologie inventée et perfectionnée à Goddard au cours des dernières décennies. »

XRISM (prononcer « crise ») est dirigé par la JAXA (Japan Aerospace Exploration Agency) en collaboration avec la NASA, avec les contributions de l'ESA (Agence spatiale européenne). Il a été mis en orbite en septembre dernier et depuis, il scrute l'univers.

La mission détecte les rayons X « mous », qui ont des énergies jusqu'à 5 000 fois supérieures à la lumière visible. Il explorera les régions les plus chaudes de l’univers, les plus grandes structures et les objets ayant la plus forte gravité, tels que les trous noirs supermassifs au cœur des galaxies lointaines.

XRISM y parvient à l'aide d'un outil appelé Resolve.

« Resolve est plus qu'une simple caméra. Son détecteur mesure la température de chaque rayon X qui le frappe », a déclaré Brian Williams, scientifique du projet XRISM de la NASA à Goddard. « Nous appelons Resolve un microspectromètre car chacun de ses 36 pixels mesure de petites quantités de chaleur transmise par chaque rayon X entrant, nous permettant de voir les empreintes chimiques des éléments qui composent les sources avec des détails sans précédent. »

Pour y parvenir, l'ensemble du détecteur doit être refroidi à -459,58 degrés Fahrenheit (-273,1 degrés Celsius), juste au-dessus du zéro absolu.

Source : Centre de vol spatial Goddard de la NASA

L'outil est si précis qu'il peut détecter les mouvements d'objets au sein de la cible, fournissant ainsi une vue 3D efficace. Le gaz se dirigeant vers nous brille avec des énergies légèrement supérieures à la normale, tandis que le gaz s'éloignant de nous émet des énergies légèrement inférieures. Cela permettra par exemple aux scientifiques de mieux comprendre le flux de gaz chauds au sein des amas de galaxies et de suivre le mouvement de divers éléments dans les débris des explosions de supernova.

Resolve emmène les astronomes dans une nouvelle ère d’exploration cosmique, en utilisant seulement trente pixels.

READ  Un avion de la NASA "touche" le soleil pour la première fois et plonge dans l'atmosphère
Continue Reading

science

Récupération scientifique sur le télescope spatial Hubble après un problème de rotation

Published

on

Récupération scientifique sur le télescope spatial Hubble après un problème de rotation

Illustration du télescope spatial Hubble au-dessus de la Terre. Crédit image : ESA/Hubble (M. Kornmesser et LL Christensen)

Le 30 avril 2024, NASA Elle a annoncé qu'elle avait regagné l'agence Le télescope spatial Hubble Aux opérations scientifiques le 29 avril. Le vaisseau spatial est à nouveau sain et opérationnel grâce à ses trois gyroscopes. Tous les instruments de Hubble sont en ligne et le vaisseau spatial a repris ses observations scientifiques.

La NASA a commencé à travailler à la reprise des opérations scientifiques après que le télescope spatial Hubble soit entré en mode sans échec le 23 avril en raison d'un problème persistant de gyroscope. Les instruments de Hubble sont restés stables et le télescope était en bonne santé.

Le télescope passait automatiquement en mode sans échec lorsque l'un des trois gyroscopes donnait de fausses lectures. Les gyroscopes mesurent les taux de rotation du télescope et font partie du système qui détermine la direction vers laquelle pointe le télescope. En mode sans échec, les opérations scientifiques sont suspendues et le télescope attend de nouvelles directions depuis la Terre.

Dernier lancement de Hubble au-dessus de la Terre

Le télescope spatial Hubble vu depuis la navette spatiale Atlantis (STS-125) en mai 2009, lors du cinquième et dernier service de l'observatoire en orbite. Crédit : NASA

Ce gyroscope particulier a amené Hubble à passer en mode sans échec en novembre après avoir renvoyé des lectures erronées similaires. L’équipe travaille actuellement à identifier des solutions potentielles. Si nécessaire, le vaisseau spatial peut être reconfiguré Cela fonctionne avec un seul gyroscopeavec l'autre gyroscope restant en réserve.

Le vaisseau spatial disposait de six nouveaux gyroscopes qui ont été installés lors de la cinquième et dernière mission d'entretien de la navette spatiale en 2009. À ce jour, trois de ces gyroscopes sont toujours opérationnels, dont celui qui vient de basculer. Hubble utilise trois gyroscopes pour une efficacité maximale, mais peut continuer à effectuer des observations scientifiques en utilisant un seul gyroscope si nécessaire.

READ  L’importance de l’unité marginale de carbonate sur Mars

La NASA s'attend à ce que Hubble continue à faire des découvertes révolutionnaires et à travailler avec d'autres observatoires, tels que le télescope spatial James Webb de l'agence, tout au long de cette décennie et peut-être au cours de la suivante.

Lancé en 1990, Hubble observe l'univers depuis plus de trois décennies et a récemment célébré son 34e anniversaire.

Continue Reading

Trending

Copyright © 2023