Connect with us

science

Un groupe de recherche révèle les propriétés du soufre des rayons cosmiques et la composition d’autres rayons cosmiques primaires

Published

on

Un groupe de recherche révèle les propriétés du soufre des rayons cosmiques et la composition d’autres rayons cosmiques primaires

Cet article a été revu selon Science X processus d’édition
Et Stratégies.
éditeurs Mettez en avant les attributs suivants tout en assurant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture

Le compteur AMS a mesuré la charge Z de tous les noyaux de rayons cosmiques jusqu’à Ni. Crédit : Collaboration AMS.

Les rayons cosmiques chargés, qui sont des ensembles de particules à haute énergie se déplaçant dans l’espace, ont été décrits pour la première fois en 1912 par le physicien Victor Hess. Depuis leur découverte, ils ont fait l’objet de nombreuses études astrophysiques visant à mieux comprendre leur origine, leur accélération et leur propagation dans l’espace, à l’aide de données satellitaires ou d’autres méthodes expérimentales.

La collaboration Alpha Magnetic Spectrometer (AMS), un grand groupe de recherche qui analyse les données recueillies par les grands spectromètres magnétiques spatiaux, a recueilli de nouvelles informations sur les propriétés et la composition de certains types de rayons cosmiques. Dans un nouvel article publié dans Lettres d’examen physique (PRL), ils ont spécifiquement révélé la composition du carbone élémentaire des rayons cosmiques, du néon et du magnésium, ainsi que la composition et les propriétés du soufre des rayons cosmiques.

« Les principales expériences qui étudient les rayons cosmiques ont généralement une erreur de 30% à 50%, souvent à une énergie cinétique inférieure à 50 GeV par noyau », a déclaré Samuel Ting, porte-parole de la collaboration AMS, à Phys.org. « Ces mesures d’erreurs importantes fournissent des informations importantes qui sont cohérentes avec de nombreux modèles théoriques. L’expérience du spectromètre magnétique Alpha sur la Station spatiale internationale fournit des mesures précises en pourcentage des particules élémentaires (électrons, positrons, protons et antiprotons) et de tous les éléments du périodique table à une énergie cinétique de plus de 1 000 gigatoélectrons, volts par nickel.

Certaines des mesures récentes recueillies par le détecteur AMS ont été difficiles à expliquer à l’aide des modèles physiques théoriques actuels. Par exemple, en mesurant la rigidité (c’est-à-dire la quantité de mouvement/charge) de toutes les particules chargées dans les rayons, le détecteur AMS a recueilli des données qui apportent un nouvel éclairage sur les propriétés de deux types différents de rayons cosmiques chargés, que les chercheurs ont nommés primaires et rayons secondaires. .

« Les noyaux des rayons cosmiques primaires (par exemple, He, C, O, Ne, Mg, Si, S, Fe, …) sont synthétisés dans les étoiles et accélérés dans des sources astrophysiques telles que les supernovae, et les rayons cosmiques secondaires (par exemple ie , Li, Be, B, F, …) sont produits dans les interactions d’un rayon proto-cosmique avec des milieux interstellaires », a expliqué Ting. Nos travaux récents sont parus dans PRL Inspiré par notre découverte des propriétés uniques des rayons cosmiques dans deux publications précédentes. »

READ  Les minuscules caméras de la NASA pour prendre des photos inestimables lors de l'alunissage

dans article précédent, AMS Collaboration a montré que les flux de rayons cosmiques primaires contenant Ne, Mg et Si avaient une dépendance à la dureté identique au-dessus de 86,5 GeV, ce qui est significativement différent de la dépendance à la dureté des rayons cosmiques primaires contenant des particules He, C, O et He. Fe. Cela indique que les rayons cosmiques primaires peuvent être divisés en au moins deux sous-classes, que l’équipe a nommées Ne-Mg-Si et He-CO-Fe.

Une figure montrant les résultats de l’AMS sur la mesure directe des rapports d’abondance à la source de sept éléments de rayons cosmiques. Crédit : Collaboration AMS.

« Jusqu’à présent, on ne sait pas grand-chose sur les propriétés des rayons cosmiques soufrés », a déclaré Ting. « Des études approfondies axées sur les propriétés du soufre cosmique, telles que nos nouveaux travaux, peuvent fournir de nouvelles informations sur les rayons cosmiques primaires, nous aidant à révéler combien de classes de rayons cosmiques primaires existent. »

dans Un autre travail précédentTing et ses collaborateurs ont trouvé des preuves que les rayons cosmiques N, Na et Al sont une combinaison de rayons cosmiques primaires et secondaires. Ils ont ensuite mesuré avec précision ces flux de rayons cosmiques sur une large plage de solidité (de quelques gigavolts à téravolts) et analysé leurs propriétés spectrales pour déterminer leurs composants primaires et secondaires uniques.

« Par exemple, les rapports d’abondance de Na/Si et Al/Si à la source ont été directement mesurés à 0,036 ± 0,003 et 0,103 ± 0,004, respectivement », a déclaré Ting. Ces mesures sont indépendantes des modèles de rayons cosmiques. Dans notre publication actuelle, nous étendons cette méthode pour mesurer les compositions primaires et secondaires de C, Ne, Mg et S, qui sont traditionnellement supposées être des rayons cosmiques primaires. De manière inattendue, nous avons constaté que tous ces éléments ont des contributions secondaires, de grandes quantités de rayons cosmiques lourds entrant en collision avec les milieux interstellaires.

L’échelle AMS est basée sur un magnétomètre à haute résolution qui est généralement utilisé pour réaliser des expériences sur Terre, par exemple pour aider à la recherche de particules fondamentales à l’aide d’accélérateurs. Il se compose de six éléments de détection qui collectent indépendamment des données sur la charge, la masse, la quantité de mouvement et l’énergie des particules élémentaires et des noyaux.

READ  Les scientifiques disent que l'étoile de la Croix du Sud est 14,5 fois plus lourde que le Soleil

Le compteur AMS est actuellement le seul spectromètre magnétique dans l’espace, les chercheurs sur Terre surveillant de près et en permanence les performances de chacun de ses six éléments pour s’assurer qu’il fonctionne de manière fiable. Avant d’être envoyé dans l’espace, notamment vers la Station spatiale internationale, en 2011, le spectromètre a été soigneusement calibré à l’aide de divers accélérateurs de particules du CERN.

« Pour garantir l’exactitude et la fiabilité des résultats, les données brutes ont été analysées indépendamment par deux à quatre groupes de recherche internationaux », a déclaré Ting. « En analysant les 10 premières années de données à l’échelle AMS, environ 200 milliards de rayons cosmiques, nous avons observé qu’au-dessus de 90 GeV, la dépendance à la rigidité des flux de soufre dans les rayons cosmiques est identique à la dépendance à la rigidité des flux Ne-Mg-Si, qui diffère de la dépendance à la dureté des flux He-CO-Fe. Cela indique que S, de manière inattendue, appartient à la classe Ne-Mg-Si des rayons cosmiques primaires.

Le Spectromètre Magnétique Alpha (AMS) sur la Station Spatiale Internationale. Crédit : NASA.

L’analyse des données sur les 200 milliards de rayons cosmiques traversant six détecteurs différents était une tâche fastidieuse et chronophage. En fin de compte, les données ont été validées et examinées par quatre équipes de recherche indépendantes situées en Italie, en Suisse, en Chine et aux États-Unis.

« Nous avons également constaté que les rayons cosmiques primaires conventionnels S, Ne, Mg et C ont tous des composants mineurs importants. Le soufre, ainsi que les noyaux cosmiques C, Ne et Mg peuvent être présentés comme une combinaison d’un composant primaire (avant diffusion dans la Voie lactée) et un composant mineur. (Pendant et après la propagation),  » a déclaré Ting, « Le rapport d’abondance dans la source de rayons cosmiques pour S/Si est de 0,167 ± 0,006, pour Ne/Si, il est de 0,833 ± 0,025, pour Mg /Si c’est 0,994 ± 0,029, et pour la plaque C/O est égal à 0,836 ± 0,025. Ces mesures directes sont indépendantes des modèles de rayons cosmiques. »

Notamment, la collaboration AMS a été la première à mesurer avec précision le flux de S dans l’univers de quelques gigavolts à téravolts. Leurs découvertes contribuent de manière significative à la compréhension des rayons cosmiques, de leur composition et de leurs propriétés.

READ  Les physiciens ont joué avec la "lumière quantique" pour la première fois, dans une percée massive : ScienceAlert

Les analyses de la collaboration AMS indiquent finalement que les contributions primaires et secondaires des flux de rayons cosmiques S, C, Ne et Mg diffèrent nettement de celles des flux N, Na et Al. Leurs découvertes, dont aucune n’est prédite par les modèles actuels de rayons cosmiques, pourraient collectivement aider à mieux comprendre la structure nucléaire des étoiles ainsi que l’origine et la propagation des rayons cosmiques.

« AMS va maintenant poursuivre l’étude minutieuse des éléments cosmiques », a ajouté Ting. « Nous mettons actuellement à niveau notre détecteur en augmentant son acceptation de 300 %. D’ici 2030, nous explorerons les propriétés des éléments cosmiques lourds restants, marqués en blanc. Ainsi, d’ici 2030, nous fournirons des informations précises et complètes sur l’origine. et la reproduction des rayons cosmiques.Cela révélera des secrets Les rayons cosmiques, tels que où et comment ils sont générés, ou comment ils nous parviennent.Dans nos prochains travaux, nous prévoyons d’étudier l’origine de la matière noire grâce à des mesures précises d’électrons, de positrons, antiprotons et antitrons. D’ici 2030, notre étude des spectres d’un positron, d’un électron, d’un antiproton et d’un antiproton ainsi que Combiné avec l’étude de l’anisotropie des positrons, une explication des résultats actuels inattendus de l’AMS. »

Lors de l’analyse des données AMS, Ting et ses collaborateurs ont également noté plusieurs particules qui pourraient être des candidats viables à l’antimatière lourde, y compris l’antihélium. Ainsi, ils prévoient également de continuer à rechercher davantage de ces particules, en particulier les carbones et les antioxydants. Parallèlement, ils analysent les changements du flux quotidien de tous les rayons cosmiques dans l’héliosphère au cours de cycles solaires de 11 ans et 22 ans, ce qui pourrait donner lieu à d’autres découvertes intéressantes.

Plus d’information:
Aguilar et al., Propriétés du soufre des rayons cosmiques et détermination de la composition du carbone primaire des rayons cosmiques, du néon, du magnésium et du soufre : résultats de dix ans de spectrométrie magnétique alpha, Lettres d’examen physique (2023). DOI : 10.1103/PhysRevLett.130.211002

Informations sur la revue :
Lettres d’examen physique


Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Published

on

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Une autre énorme éruption solaire a explosé quelques jours après la dernière éruption, provoquant des expositions époustouflantes d’aurores boréales à travers le Royaume-Uni et les États-Unis – mais ne vous attendez pas à une autre exposition époustouflante.

Cette dernière éruption est plus puissante que l’explosion du week-end et constitue la plus importante depuis près de deux décennies.

Cette éruption est beaucoup plus grande, mais la placer face au soleil en réduit l’effet.Crédit : NOAA
Une tempête solaire majeure au cours du week-end a donné lieu à des expositions éblouissantes d’aurores boréales à travers le Royaume-Uni et les États-Unis.Crédit : PA

De graves tempêtes solaires peuvent perturber les satellites GPS, les réseaux électriques, les appareils électroniques, y compris les téléphones portables, et Internet.

Le résultat le moins destructeur et le plus délicieux est l’éblouissante aurore boréale verte et violette, connue sous le nom d’aurores boréales.

Mais cette nouvelle éruption ne devrait pas provoquer de chaos, et il est peu probable que de la lumière apparaisse non plus.

Le pire des cas est une perte temporaire des signaux radio, selon la National Oceanic and Atmospheric Administration (NOAA).

La Terre a échappé à la ligne de mire lorsque l’éruption a éclaté sur une partie du Soleil en orbite loin de nous.

L’Administration nationale des océans et de l’atmosphère (NOAA) a émis une alerte indiquant que le soleil n’est « pas encore en plein soleil ».

La dernière fusée éclairante a été classée par les experts comme X8.7, plus forte que la fusée X2.2 du week-end.

Il s’agit du plus grand cycle solaire actuel de 11 ans.

READ  Les scientifiques disent que l'étoile de la Croix du Sud est 14,5 fois plus lourde que le Soleil

« Compte tenu de son emplacement, toute éjection de masse coronale associée à cette éruption n’aurait probablement aucun effet géomagnétique sur Terre », a expliqué la NOAA.

Mais Brian Brasher, de la National Oceanic and Atmospheric Administration (NOAA), a déclaré à l’AP que la lueur pourrait être plus forte lorsque les scientifiques collectent des données provenant d’autres sources.

Les Britanniques de tout le pays ont pu profiter d’une vue éblouissante sur les aurores boréales grâce à la tempête solaire.

Pendant ce temps, le Met Office britannique a déclaré : « Toutes les vues seront probablement limitées aux hautes latitudes » avec « seulement une faible chance de s’étendre aussi loin au sud que l’Écosse ou des latitudes similaires ».

Le Soleil approche du sommet de son cycle de 11 ans, créant de puissantes explosions d’énergie et de matière qui sont libérées très rapidement et pourraient heurter le champ magnétique terrestre.

Aucune perturbation majeure n’est attendue cette fois

Qu’est-ce que les aurores boréales ?

Les aurores boréales se produisent lorsque des particules chargées entrent en collision avec des gaz présents dans l’atmosphère terrestre autour des pôles magnétiques.

Dans l’hémisphère Nord, la majeure partie de cette activité se produit dans une bande connue sous le nom d’ovale d’aurore, couvrant des latitudes comprises entre 60 et 75 degrés.

Lorsque l’activité est forte, elle s’étend pour couvrir une zone plus vaste – ce qui explique pourquoi les expositions peuvent parfois être vues aussi loin au sud que le Royaume-Uni.

La visibilité des aurores boréales a augmenté vendredi en raison d’une « forte » tempête géomagnétique, selon l’Administration nationale américaine des océans et de l’atmosphère (NOAA).

READ  Découvrez les secrets de la chimie spatiale

Ce phénomène apparaît sous la forme de magnifiques bandes de lumière vertes et violettes dansantes, qui captivent les gens depuis des milliers d’années.

Continue Reading

science

Des scientifiques irlandais développent un système capable de prouver l’existence de la vie sur Mars

Published

on

Des scientifiques irlandais développent un système capable de prouver l’existence de la vie sur Mars

Les scientifiques de la Dublin City University (DCU) estiment que notre planète a 4,5 milliards d’années et que les premiers signes de vie ici – créés par des organismes microscopiques – se trouvaient dans des roches anciennes, il y a 3,7 milliards d’années.

Le professeur Sean Jordan, de la DCU, a déclaré : « Le problème avec les estimations des premières formes de vie est que les caractéristiques créées par ces premiers organismes, qui ont laissé des empreintes physiques dans ces roches anciennes, pourraient, je pense, avoir été créées par un autre processus qui ne le fait pas. pas « . Cela n’implique aucune forme de vie.

Le Dr Jordan, dont les recherches viennent d’être publiées dans la revue scientifique, a ajouté : « Les recherches que nous menons à la DCU pourraient fournir une bien meilleure façon de répondre à cette question importante avec plus de certitude. » Communications Terre et Environnement.

La NASA prévoit une mission de retour d’échantillons sur Mars dans les années 2030.

Cela impliquera de renvoyer des échantillons de roches et de poussières sur Terre pour analyse. À ce stade, il sera crucial pour la science de disposer d’une méthode éprouvée et fiable pour identifier les premiers signes de vie dans les spécimens anciens.

Le Dr Jordan a déclaré : « Nous devons de toute urgence développer une méthode scientifique éprouvée pour identifier les premiers signes de vie dans les roches anciennes, et c’était l’objet de cette nouvelle recherche. » « Actuellement, lorsque nous observons de petites structures microscopiques dans des roches anciennes, nous ne pouvons pas être sûrs si elles ont été formées par des organismes vivants primitifs ou par un processus non vivant.

READ  Les scientifiques disent que l'étoile de la Croix du Sud est 14,5 fois plus lourde que le Soleil

« Ce processus non vivant peut être le signe de structures chimiques qui conduisent à l’origine de la vie.

« Je développe des méthodes qui nous permettront d’étudier exactement cela. C’est important car cela permettra aux scientifiques d’identifier les premiers signes de vie sur Terre et peut-être sur d’autres planètes. »

Mars a déjà été décrite comme un désert aride, où les températures descendent jusqu’à -153°C en hiver et où l’atmosphère ne représente que 1 % de la densité terrestre, composée principalement de dioxyde de carbone.

Au cours du premier milliard d’années, les océans et les mers étaient protégés par une épaisse couche d’air.

Cependant, son champ magnétique s’est fermé, permettant au vent solaire d’emporter l’atmosphère et l’eau et de disparaître dans l’espace.

Continue Reading

science

Des chercheurs démontrent les transformations induites par laser du plasma solide en plasma ultrarapide

Published

on

Des chercheurs démontrent les transformations induites par laser du plasma solide en plasma ultrarapide

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

Relecture


Une technique de sonde à tir unique et une approche de modélisation détectent la transition ultrarapide du solide au plasma induite par le laser. Crédit : Transred

× Fermer


Une technique de sonde à tir unique et une approche de modélisation détectent la transition ultrarapide du solide au plasma induite par le laser. Crédit : Transred

L’interaction de matériaux solides avec des impulsions laser très courtes et de haute intensité a permis des avancées technologiques majeures au cours du dernier demi-siècle. D’une part, l’ablation laser de matériaux solides permet une fabrication précise et une miniaturisation d’éléments dans des dispositifs médicaux ou de communication. D’un autre côté, les faisceaux d’ions accélérés provenant de matériaux solides utilisant des lasers intenses pourraient ouvrir la voie à de nouvelles opportunités de traitement du cancer grâce à la protonthérapie laser, à la recherche sur l’énergie de fusion et à l’analyse du patrimoine culturel.

Cependant, il reste encore des défis à relever pour pousser les performances d’ablation laser à l’échelle nanométrique et parvenir à une accélération ionique pilotée par laser dans l’industrie et à des fins médicales.

Lors de l’interaction d’une impulsion laser ultracourte avec une cible solide, cette dernière évolue vers un état ionisé ou plasma dans un laps de temps très court (moins d’une picoseconde). [ps]), où se produisent de nombreux processus physiques complexes et couplés, alors que l’interaction entre eux n’est pas encore entièrement comprise.

En raison du développement de la cible ultrarapide, l’étape initiale de la réaction, c’est-à-dire la formation du plasma, est difficile à atteindre expérimentalement. Par conséquent, cette transition ultrarapide du solide au plasma, qui définit les conditions initiales des processus ultérieurs tels que l’ablation ou l’accélération des particules, a jusqu’à présent été abordée par des hypothèses approximatives dans la plupart des modèles numériques décrivant une telle interaction.

En neuf papier Publié dans Lumière : science et applications, une équipe internationale de scientifiques, dont Yasmina Azzammoum et Malti C. Kaluza de l’Institut Helmholtz de Jena et de l’Université Friedrich Schiller de Jena, Allemagne, Stefan Skupin de l’Institut Lumière-Matier, France, et Guillaume Duchateau de la Commission de l’énergie. atomique (CEA-Cesta), France et ses co-auteurs ont franchi une étape importante en élucidant la transformation ultrarapide induite par laser du solide au plasma et en fournissant une compréhension approfondie de l’interaction des processus sous-jacents.

Il offre une technologie avancée d’inspection optique mono-coup qui permet une vue complète de la dynamique de la cible, depuis les solides froids passant par la phase d’ionisation jusqu’aux plasmas extrêmement denses. Ceci est réalisé en utilisant une impulsion de sonde laser avec un spectre optique à large bande qui éclaire l’interaction de l’impulsion de pompe avec des flocons de carbone de type diamant d’une épaisseur nanométrique. Différentes couleurs de l’impulsion de la sonde arrivent à différents moments d’interaction en raison du gazouillis temporel.

Par conséquent, l’évolution de l’état cible codé dans la lumière de sonde transmise peut être capturée avec une seule impulsion de sonde. Cette technique d’inspection ponctuelle est avantageuse par rapport aux méthodes pompe-sonde traditionnelles, où le processus étudié doit être reproduit à l’identique par la pompe pour chaque délai de sonde. Ceci est particulièrement important lors de l’utilisation de systèmes laser haute puissance, qui souffrent souvent de fortes fluctuations entre les impulsions.

En outre, les scientifiques ont démontré que pour l’interprétation correcte des profils de transport de sonde mesurés, une description précise de la transition précoce solide-plasma est cruciale. Un modèle de réaction en deux étapes est développé, la première étape considérant la dynamique d’ionisation de la cible à l’état solide et la deuxième étape considérant la cible à l’état plasma.

Une évolution détaillée de l’état cible à haute résolution temporelle et spatiale (respectivement sub-ps et nm) est fournie, ainsi qu’un aperçu sans précédent de l’interaction entre les processus fondamentaux tels que la dynamique d’ionisation, les collisions de particules et l’expansion hydrodynamique du plasma.

Les résultats et l’interprétation de cette nouvelle technique de criblage devraient contribuer à une compréhension plus approfondie de la dynamique des différentes cibles et à une meilleure compréhension des processus physiques sous-jacents. Ces avancées contribueront probablement à aller au-delà des méthodes traditionnelles de traitement des matériaux par laser ultrarapide et à rendre les technologies ioniques accélérées par laser utilisables dans des applications sociétales.

Plus d’information:
Yasmina Azzam et al., Examen optique des transitions de plasma solide à plasma hyper-densité induites par des lasers ultrarapides, Lumière : science et applications (2024). est ce que je: 10.1038/s41377-024-01444-j

Informations sur les magazines :
Lumière : science et applications


READ  Une étude révèle que les déserts respirent la vapeur d'eau
Continue Reading

Trending

Copyright © 2023