Connect with us

science

La première étape du nouveau broyeur d'atomes massif européen pourrait avoir lieu dans 20 ans, selon ScienceAlert

Published

on

La première étape du nouveau broyeur d'atomes massif européen pourrait avoir lieu dans 20 ans, selon ScienceAlert

L’un de mes faits scientifiques et techniques préférés est qu’une rivière souterraine a été gelée pour permettre la construction du Grand collisionneur de hadrons (LHC) !

Une fois terminé, il a permis de compléter le puzzle du modèle standard avec sa dernière pièce, le boson de Higgs. Mais c’est tout ce qu’il est allé sans aucun autre pas en avant passionnant dans l’unification de la gravité et de la physique quantique.

Des plans sont actuellement en cours pour construire un nouveau collisionneur qui sera trois fois plus long que le Grand collisionneur de hadrons (LHC) et qui sera capable de briser des molécules ensemble avec une énergie bien plus grande.

Au cours des dernières décennies, les collisionneurs de particules sont devenus un outil majeur pour percer les mystères de l’univers à un niveau fondamental. Le Grand collisionneur de hadrons (LHC) a changé les règles du jeu, devenant le collisionneur le plus puissant du monde avec une circonférence stupéfiante de 27 kilomètres (17 miles).

Il est désormais prévu d'augmenter le nombre de collisions pour tenter d'améliorer leur apport à la compréhension de l'univers, mais même à ce stade de « haute luminosité » le CERN (Conseil européen pour la recherche nucléaire) veut aller plus loin et construire un nouveau collisionneur !

Si les collisionneurs comme le LHC veulent jouer un rôle dans la physique des hautes énergies dans les années à venir, les seuils énergétiques doivent être franchis au-delà des capacités actuelles. L'étude Future Circular Collider (FCC) a étudié plusieurs modèles de collisionneurs, l'infrastructure de recherche étant envisagée dans un tunnel souterrain de 100 kilomètres de long. Ce projet ambitieux promet un programme de physique qui propulsera la recherche sur les hautes énergies au siècle prochain.

READ  Une histoire géologique complexe du chaos d'Aram

La conception et l'ingénierie du nouveau tunnel posent un certain nombre de défis ; Il devrait s'éloigner des zones géologiquement intéressantes, améliorer l'efficacité des futurs collisionneurs, permettre la communication avec le LHC et respecter les impacts sociaux et environnementaux des bâtiments et des infrastructures de surface.

Choisir « où le placer » semble être un défi majeur, c'est pourquoi toute une série d'options de planification sont envisagées, guidées par l'intention du CERN d'éviter tout impact sur la zone.

À l’intérieur du tunnel du FCC (qui semble être placé sous un tunnel souterrain en forme d’anneau situé sous la Haute-Savoie et l’Ain en France et Genève en Suisse), se trouveront deux collisionneurs qui fonctionneront ensemble de manière séquentielle.

La première phase devrait ouvrir vers le milieu des années 2040 et comprendra le collisionneur électron-positon (FCC-ee). L’espoir est qu’il fournira des mesures précises sans précédent et dévoilera la physique au-delà du modèle standard. Il sera suivi par le collisionneur proton-proton (FCC-hh) qui dépassera de huit fois la capacité énergétique du LHC !

C'est une perspective passionnante que la FCC puisse pousser les collisions de particules à des énergies allant jusqu'à 100 TeV dans l'espoir de révéler de nouveaux domaines de la physique. Toutefois, pour atteindre cet objectif, de nouvelles avancées technologiques seront nécessaires et, à cette fin, plus de 150 universités du monde entier étudient différentes options.

Cet article a été initialement publié par L'univers aujourd'hui. Lis le Article original.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Étude : Les anciens humains fabriquaient des armes mortelles en bois il y a 300 000 ans

Published

on

Étude : Les anciens humains fabriquaient des armes mortelles en bois il y a 300 000 ans

De nouvelles techniques d’imagerie puissantes révèlent que les humains fabriquaient déjà des armes de chasse complexes à partir du bois il y a 300 000 ans, bouleversant ainsi le stéréotype de l’âge de pierre.

Les archéologues ont déjà soupçonné Les humains utilisent des outils en bois depuis au moins aussi longtemps que des outils en pierre, mais en raison de la nature plus fragile du bois, la plupart des preuves ont pourri.

Aujourd’hui, en utilisant la microscopie 3D et les scanners micro-CT pour examiner 187 objets en bois de Schöningen en Allemagne, l’archéologue Dirk Lederer de l’Office national du patrimoine culturel de Basse-Saxe et ses collègues ont confirmé ces soupçons.

« Le bois était une matière première cruciale pour l’évolution humaine, mais il n’a survécu qu’à l’âge de pierre à Schöningen ère paléolithique La période est d’une qualité si merveilleuse. Il explique Thomas Terberger, archéologue de l’Université de Göttingen.

Cette cache d’objets en bois est la plus grande connue pléistocène (il y a 2,58 à 11 700 ans) Il y avait au moins 10 lances, 7 bâtons de jet et 35 outils ménagers. Ils sont tous sculptés dans des bois réputés à la fois souples et durs, notamment l’épicéa, le pin et le cèdre.

Les outils montraient des preuves évidentes d’une technique de fendage qui était auparavant connue uniquement pour être utilisée par les humains modernes, ainsi que des signes de sculpture, de grattage et d’abrasion.

« La façon dont les instruments en bois étaient fabriqués de manière si experte a été une révélation pour nous. » Il crie Annemieke Milks, archéologue paléolithique de l’Université de Reading.

READ  Hommage à l'équipe DART qui a détruit des astéroïdes et à l'astronaute Peggy Whitson, qui a battu des records pour son impact sur la science spatiale.

Travailler le bois jusqu’à un nouveau niveau de sophistication est un processus lent et en plusieurs étapes qui demande beaucoup de patience et de prévoyance. De plus, l’ère des outils coïncide avec la montée en puissance des Néandertaliens en Europe, dépassant les autres espèces humaines primitives.

Techniques de travail du bois utilisées pour les boiseries rondes (en haut) et les boiseries fendues (en bas). (Leader et coll., Avec des gens2024)

Le site de Schöningen contient également des preuves de jusqu’à 25 animaux abattus, pour la plupart des chevaux.

« Il s’avère que c’est un préHomo sapiens « J’ai fabriqué des outils et des armes pour chasser le gros gibier », a déclaré Terberger. Dire Franz Leeds V. Le New York Times. « Non seulement ils communiquaient ensemble pour abattre leurs proies, mais ils étaient suffisamment sophistiqués pour organiser le dépeçage et le rôtissage. »

Les chercheurs affirment que ces puissantes capacités de chasse sont probablement beaucoup plus anciennes que les objets en bois trouvés à Schöningen. Ces compétences auraient permis aux premiers humains d’avoir accès à des sources alimentaires de haute qualité pendant des générations, offrant ainsi la capacité nécessaire à cette augmentation du développement cérébral et des compétences cognitives associées.

« Dans la même veine, [hunting] « Cela aurait assuré une population durable même dans les régions d’Europe les moins adaptées au Pléistocène et aurait contribué à l’expansion de l’aire de répartition humaine dans le monde entier », ont déclaré Leder et son équipe. Écrire dans leur article.

Étonnamment, les chercheurs ont également trouvé des preuves de recyclage. Les outils cassés ou émoussés ont été retravaillés à de nouvelles fins.

« L’étude fournit des informations uniques sur les techniques de menuiserie du Pléistocène », déclarent les chercheurs. Nous concluons.

READ  désolé proie. Les veuves noires ont une mémoire étonnamment bonne

« Les armes de chasse en bois de Schöningen incarnent l’interaction entre la complexité technologique, le comportement humain et l’évolution humaine. »

Leur étude a été publiée dans Avec des gens.

Continue Reading

science

Une nouvelle méthode d’appariement des fonctions d’onde aide à résoudre les problèmes quantiques à plusieurs corps

Published

on

Une nouvelle méthode d’appariement des fonctions d’onde aide à résoudre les problèmes quantiques à plusieurs corps

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Correspondant à la fonction d’onde et à la gamme Tjon. crédit: nature (2024). est ce que je: 10.1038/s41586-024-07422-z

× Fermer


Correspondant à la fonction d’onde et à la gamme Tjon. crédit: nature (2024). est ce que je: 10.1038/s41586-024-07422-z

Les systèmes en interaction forte jouent un rôle important en physique quantique et en chimie quantique. Les méthodes stochastiques telles que la simulation de Monte Carlo constituent un moyen éprouvé pour étudier de tels systèmes. Cependant, ces méthodes atteignent leurs limites lorsque se produisent des oscillations de signal.

Ce problème a maintenant été résolu par une équipe internationale de chercheurs d’Allemagne, de Turquie, des États-Unis, de Chine, de Corée du Sud et de France en utilisant la nouvelle méthode d’appariement des fonctions d’onde. Par exemple, les masses et les rayons de tous les noyaux jusqu’au groupe numéro 50 ont été calculés à l’aide de cette méthode. Les résultats sont désormais en accord avec les mesures des chercheurs un rapport Dans le magazine nature.

Toute matière sur Terre est constituée de minuscules particules appelées atomes. Chaque atome contient des particules plus petites : des protons, des neutrons et des électrons. Chacune de ces particules suit les règles de la mécanique quantique. La mécanique quantique constitue la base de la théorie quantique à N corps, qui décrit des systèmes contenant de nombreuses particules, tels que les noyaux atomiques.

Une classe de méthodes utilisées par les physiciens nucléaires pour étudier les noyaux atomiques est l’approche fondée sur des principes. Il décrit des systèmes complexes en commençant par une description de leurs composants élémentaires et de leurs interactions. Dans le cas de la physique nucléaire, les composants élémentaires sont les protons et les neutrons. Certaines des questions clés auxquelles les calculs élémentaires peuvent contribuer à répondre concernent les énergies de liaison et les propriétés des noyaux atomiques et la relation entre la structure nucléaire et les interactions fondamentales entre protons et neutrons.

Cependant, ces méthodes primitives ont des difficultés à effectuer des calculs fiables pour des systèmes aux interactions complexes. L’une de ces méthodes est la simulation quantique de Monte Carlo. Ici, les quantités sont calculées à l’aide de processus stochastiques ou stochastiques.

Bien que les simulations quantiques de Monte Carlo puissent être efficaces et puissantes, elles souffrent d’une faiblesse majeure : le problème des signes. Cela se produit dans les opérations avec des poids positifs et négatifs qui s’annulent. Cette annulation conduit à des prédictions finales inexactes.

La nouvelle approche, connue sous le nom de correspondance de fonctions d’onde, vise à aider à résoudre ces problèmes de calcul pour les méthodes élémentaires.

« Ce problème est résolu par la nouvelle méthode d’appariement des fonctions d’onde en mappant le problème complexe à une première approximation d’un système modèle simple qui ne présente pas de telles oscillations de signal, puis en abordant les différences dans la théorie des perturbations », explique le professeur Ulf-Gee. Meissner est membre de l’Institut Helmholtz de physique des rayonnements et nucléaires de l’Université de Bonn, ainsi que de l’Institut de physique nucléaire et du Centre de simulation et d’analyse avancées du Forschungszentrum Jülich.

« Par exemple, les masses et les rayons de tous les noyaux jusqu’au groupe numéro 50 ont été calculés et les résultats concordent avec les mesures », explique Meissner, qui est également membre des domaines de recherche interdisciplinaires Modélisation et Matériaux à Harvard. Université de Bonn.

« Dans la théorie quantique à N corps, nous rencontrons souvent une situation dans laquelle nous pouvons effectuer des calculs en utilisant une simple interaction approximative, mais les interactions de haute précision du monde réel provoquent de graves problèmes de calcul », explique Dean Lee, professeur de physique à l’Université Rare. Centre de recherche. Istope Beams et le Département de physique et d’astronomie (FRIB) de la Michigan State University et directeur du Département des sciences nucléaires théoriques.

La correspondance des fonctions d’onde résout ce problème en supprimant la partie à courte distance de l’interaction de haute précision et en la remplaçant par la partie à courte distance d’une interaction facilement calculable. Cette transformation est effectuée de manière à préserver toutes les propriétés importantes de l’interaction originale du monde réel.

Étant donné que les nouvelles fonctions d’onde ressemblent à celles de l’interaction facilement calculable, les chercheurs peuvent désormais effectuer des calculs en utilisant l’interaction facilement calculable et appliquer une procédure standard pour traiter les petites corrections – appelée théorie des perturbations.

L’équipe de recherche a appliqué cette nouvelle méthode aux simulations quantiques de Monte Carlo de noyaux légers, de noyaux de masse moyenne, de matière neutronique et de matière nucléaire. Grâce à des calculs minutieux à partir de zéro, les résultats correspondent étroitement aux données réelles sur les propriétés nucléaires telles que la taille, la structure et l’énergie de liaison. Des calculs qui étaient auparavant impossibles en raison du problème de signe peuvent désormais être effectués grâce à l’appariement de fonctions d’onde.

Alors que l’équipe de recherche s’est concentrée exclusivement sur les simulations quantiques de Monte Carlo, l’appariement des fonctions d’onde devrait être utile pour de nombreuses approches fondées sur des principes différents. « Cette méthode peut être utilisée à la fois en informatique classique et quantique, par exemple, pour mieux prédire les propriétés des matériaux dits topologiques, qui sont importants pour l’informatique quantique », explique Meissner.

Le premier auteur est le professeur Serdar Al-Hatisari, qui a travaillé pendant deux ans en tant que membre de la bourse ERC Advanced EXOTIC du professeur Meissner. Selon Meissner, une grande partie du travail a été réalisée à cette époque. Une partie du temps de calcul des supercalculateurs du Forschungszentrum Jülich a été assurée par l’Institut IAS-4, dirigé par Meissner.

Plus d’information:
Sardar Hattisari et al., Correspondance de fonctions d’onde pour résoudre des problèmes quantiques à plusieurs corps, nature (2024). est ce que je: 10.1038/s41586-024-07422-z

Informations sur les magazines :
nature


READ  Pourquoi avons-nous plus que jamais besoin de l’astronomie ?
Continue Reading

science

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Published

on

Une éruption solaire massive éclate quelques jours après qu’une intense tempête ait créé les aurores boréales.

Une autre énorme éruption solaire a explosé quelques jours après la dernière éruption, provoquant des expositions époustouflantes d’aurores boréales à travers le Royaume-Uni et les États-Unis – mais ne vous attendez pas à une autre exposition époustouflante.

Cette dernière éruption est plus puissante que l’explosion du week-end et constitue la plus importante depuis près de deux décennies.

Cette éruption est beaucoup plus grande, mais la placer face au soleil en réduit l’effet.Crédit : NOAA
Une tempête solaire majeure au cours du week-end a donné lieu à des expositions éblouissantes d’aurores boréales à travers le Royaume-Uni et les États-Unis.Crédit : PA

De graves tempêtes solaires peuvent perturber les satellites GPS, les réseaux électriques, les appareils électroniques, y compris les téléphones portables, et Internet.

Le résultat le moins destructeur et le plus délicieux est l’éblouissante aurore boréale verte et violette, connue sous le nom d’aurores boréales.

Mais cette nouvelle éruption ne devrait pas provoquer de chaos, et il est peu probable que de la lumière apparaisse non plus.

Le pire des cas est une perte temporaire des signaux radio, selon la National Oceanic and Atmospheric Administration (NOAA).

La Terre a échappé à la ligne de mire lorsque l’éruption a éclaté sur une partie du Soleil en orbite loin de nous.

L’Administration nationale des océans et de l’atmosphère (NOAA) a émis une alerte indiquant que le soleil n’est « pas encore en plein soleil ».

La dernière fusée éclairante a été classée par les experts comme X8.7, plus forte que la fusée X2.2 du week-end.

Il s’agit du plus grand cycle solaire actuel de 11 ans.

READ  La sonde solaire Parker est bombardée de poussière ultra-rapide. Peuvent-ils endommager les vaisseaux spatiaux ?

« Compte tenu de son emplacement, toute éjection de masse coronale associée à cette éruption n’aurait probablement aucun effet géomagnétique sur Terre », a expliqué la NOAA.

Mais Brian Brasher, de la National Oceanic and Atmospheric Administration (NOAA), a déclaré à l’AP que la lueur pourrait être plus forte lorsque les scientifiques collectent des données provenant d’autres sources.

Les Britanniques de tout le pays ont pu profiter d’une vue éblouissante sur les aurores boréales grâce à la tempête solaire.

Pendant ce temps, le Met Office britannique a déclaré : « Toutes les vues seront probablement limitées aux hautes latitudes » avec « seulement une faible chance de s’étendre aussi loin au sud que l’Écosse ou des latitudes similaires ».

Le Soleil approche du sommet de son cycle de 11 ans, créant de puissantes explosions d’énergie et de matière qui sont libérées très rapidement et pourraient heurter le champ magnétique terrestre.

Aucune perturbation majeure n’est attendue cette fois

Qu’est-ce que les aurores boréales ?

Les aurores boréales se produisent lorsque des particules chargées entrent en collision avec des gaz présents dans l’atmosphère terrestre autour des pôles magnétiques.

Dans l’hémisphère Nord, la majeure partie de cette activité se produit dans une bande connue sous le nom d’ovale d’aurore, couvrant des latitudes comprises entre 60 et 75 degrés.

Lorsque l’activité est forte, elle s’étend pour couvrir une zone plus vaste – ce qui explique pourquoi les expositions peuvent parfois être vues aussi loin au sud que le Royaume-Uni.

La visibilité des aurores boréales a augmenté vendredi en raison d’une « forte » tempête géomagnétique, selon l’Administration nationale américaine des océans et de l’atmosphère (NOAA).

READ  Une histoire géologique complexe du chaos d'Aram

Ce phénomène apparaît sous la forme de magnifiques bandes de lumière vertes et violettes dansantes, qui captivent les gens depuis des milliers d’années.

Continue Reading

Trending

Copyright © 2023