Connect with us

science

Un signal d’alarme depuis l’Antarctique

Published

on

Un signal d’alarme depuis l’Antarctique

Dans cette illustration, l’eau de mer s’écoule profondément sous la surface dans une fissure de la banquise qui s’ouvre activement en Antarctique. De nouvelles recherches montrent que de telles fissures peuvent s’ouvrir très rapidement et que l’écoulement de l’eau de mer aide à contrôler la rapidité avec laquelle la banquise se brise. Crédit : Rob Soto

Il y a suffisamment d'eau gelée dans les glaciers du Groenland et de l'Antarctique pour que, s'ils fondaient, les mers du monde s'élèveraient de plusieurs mètres. Ce qui arrivera à ces glaciers au cours des prochaines décennies constitue la plus grande inconnue en ce qui concerne l’augmentation future du niveau de la mer, en partie parce que la physique du vêlage des glaciers n’est pas encore entièrement comprise.

La question cruciale est de savoir comment des océans plus chauds peuvent entraîner une désintégration plus rapide des glaciers. Université de Washington Les chercheurs ont démontré la fracture à grande échelle la plus rapide connue le long de la plate-forme de glace de l'Antarctique. L'étude a été récemment publiée dans Fourni par l'Université du Golfe ArabiqueIl montre qu'une fissure de 10,5 kilomètres de long s'est formée en 2012 sur le glacier de Pine Island – une plate-forme de glace en retrait retenant la plus grande calotte glaciaire de l'Antarctique occidental – en 5 minutes et demie environ. Cela signifie que la fissure s'est ouverte à une vitesse d'environ 115 pieds (35 mètres) par seconde, soit environ 80 miles par heure.

« À notre connaissance, il s'agit de l'événement d'ouverture de faille le plus rapide jamais observé », a déclaré l'auteur principal Stephanie Olinger, qui a réalisé ce travail dans le cadre de ses recherches doctorales à l'Université du Wisconsin et à l'Université Harvard et est maintenant chercheuse postdoctorale à l'Université de Stanford. . « Cela montre que, dans certaines conditions, les plates-formes de glace peuvent se briser. Cela nous indique que nous devons rechercher ce type de comportement à l'avenir et cela nous indique comment nous pouvons décrire ces fractures dans des modèles de calotte glaciaire à grande échelle. « .

READ  Vénus semble avoir traversé un groupe de plus de 1 000 étoiles en juin

L'importance de la formation de fissures

La crevasse est une fissure qui traverse environ 1 000 pieds (300 m) de glace flottante d'une plate-forme de glace typique de l'Antarctique. Ces fissures sont un précurseur du vêlage de la banquise, où de gros morceaux de glace se détachent d'un glacier et tombent dans la mer. De tels événements se produisent souvent au glacier Pine Island, où l'iceberg observé dans l'étude s'est longtemps séparé du continent.

Image satellite de la faille

Des images satellite prises le 8 mai (à gauche) et le 11 mai (à droite), à ​​trois jours d'intervalle en 2012, montrent une nouvelle faille formant un « Y » bifurquant à gauche de la faille précédente. Trois instruments sismiques (triangles noirs) ont enregistré des vibrations qui ont été utilisées pour calculer des vitesses de propagation des failles allant jusqu'à 80 mph. Crédit : Olinger et al./AGU Advances

« Les plates-formes de glace exercent une influence importante sur la stabilité du reste de la calotte glaciaire de l'Antarctique. « Si la plate-forme de glace se brise, la glace située derrière elle s'accélère », a déclaré Ollinger. « Ce processus de fracturation est essentiellement la façon dont les plates-formes de glace de l'Antarctique travail. »Création de grands icebergs.

Dans d’autres régions de l’Antarctique, les failles se développent souvent sur des mois ou des années. Mais cela pourrait se produire plus rapidement dans un environnement en évolution rapide comme le glacier de Pine Island, où les chercheurs pensent que la calotte glaciaire de l’Antarctique occidental s’est déjà formée. Un tournant est passé Quand il s'effondre dans l'océan.

READ  Des scientifiques étudient les origines de la vie en simulant l'évolution cosmique

Défis liés à la surveillance des changements glaciaires

Les images satellite fournissent un retour d’information continu. Mais les satellites en orbite autour de la Terre ne traversent chaque point de la Terre que tous les trois jours. Il est difficile de déterminer ce qui se passera pendant ces trois jours, surtout compte tenu de la vue dangereuse de la fragile banquise antarctique.

Dans la nouvelle étude, les chercheurs ont combiné des outils pour comprendre la formation des failles. Ils ont utilisé des données sismiques enregistrées par des instruments placés sur la banquise par d'autres chercheurs en 2012 ainsi que des observations radar de satellites.

La glace glaciaire se comporte comme un solide sur de courtes échelles de temps, mais plutôt comme un liquide visqueux sur de longues échelles de temps.

« La formation d'une fissure ressemble-t-elle davantage à un bris de verre ou à un bris de Silly Putty ? C'était la question », a déclaré Ollinger. « Nos calculs de cet événement montrent que c'est très similaire au bris de verre. »

Le rôle de l’eau de mer et les recherches futures

Si la glace était un simple matériau fragile, elle se décomposerait plus rapidement, a déclaré Olinger. Une enquête plus approfondie a mis en évidence le rôle de l'eau de mer. L'eau de mer contenue dans les crevasses maintient l'espace ouvert contre les forces intérieures du glacier. Étant donné que l’eau de mer a une viscosité, une tension superficielle et une masse, elle ne peut pas combler un vide instantanément. Au lieu de cela, la vitesse à laquelle l’eau de mer remplit l’ouverture de la fissure contribue à ralentir la propagation de la fissure.

READ  Voici quelques-unes des plus grandes missions spatiales en 2023

« Avant de pouvoir améliorer les performances des modèles de calotte glaciaire à grande échelle et les prévisions de l'élévation future du niveau de la mer, nous devons avoir une bonne compréhension, basée sur la physique, des nombreux processus différents qui influencent la stabilité de la plate-forme de glace », a déclaré Olinger.

Référence : « Le couplage océanique limite la vitesse de rupture pour l'événement de propagation de fissure de plate-forme glaciaire le plus rapide » par Stephanie D. Olinger et Bradley B. Lipofsky et Marin A. Denol, 05 février 2024, Fourni par l'Université du Golfe Arabique.
est ce que je: 10.1029/2023AV001023

La recherche a été financée par la National Science Foundation. Les co-auteurs sont Brad Lipofsky et Marine Degnole, tous deux membres du corps professoral de l'UW en sciences de la terre et de l'espace, qui ont commencé à conseiller leurs travaux à Harvard.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Comment les chauves-souris de Salomon défient leur apparence

Published

on

Comment les chauves-souris de Salomon défient leur apparence

Les chercheurs ont découvert une diversité génétique significative parmi les chauves-souris à nez feuille des Îles Salomon, révélant que les chauves-souris de tailles similaires sur différentes îles sont des espèces génétiquement distinctes. Cette découverte remet en question les classifications morphologiques précédentes et a des implications pour la conservation et la compréhension des processus évolutifs. Crédit : SciTechDaily.com

L’analyse génétique des chauves-souris à nez feuille des Îles Salomon montre une diversité inattendue, suggérant des besoins de conservation uniques et remettant en question les classifications précédentes basées sur la taille.

Des chercheurs de l’Université de Melbourne et de l’Université du Kansas ont découvert une diversité génétique significative parmi les chauves-souris à nez feuille des Îles Salomon, malgré leur apparence similaire dans différentes îles. Cette recherche est publiée dans la revue développementCollecte d’échantillons sur le terrain et analyse génétique.

« Il s’agit d’un genre de chauves-souris appelé Hipposideros multiple Classer « Partout en Asie du Sud-Est dans le Pacifique », a déclaré le co-auteur Rob Moyle, conservateur principal en ornithologie à l’Institut de la biodiversité et au Musée d’histoire naturelle de l’UCLA, dont le laboratoire a effectué une grande partie des recherches. « Aux Îles Salomon, où nous effectuons beaucoup de travaux de terrain, il peut y avoir quatre ou cinq espèces différentes sur chaque île, et elles sont analysées en termes de taille corporelle : petites, moyennes et grandes – ou s’il y en a. plus de trois espèces, il y en a de petites. Sur une île, il y en a cinq, moyennes, grandes et très grandes, il y a donc une petite île supplémentaire.

Détails et résultats de l’étude

Selon Rob Moyle, qui est également professeur de biologie évolutive à l’UCLA, des recherches antérieures basées uniquement sur des caractéristiques physiques ont conclu que les chauves-souris de taille similaire provenant de différentes îles appartenaient toutes à la même espèce. « Vous vous déplacez d’île en île et vous trouverez des espèces de taille moyenne semblables à celles d’autres îles », a-t-il déclaré. Les biologistes ont toujours examiné ces choses et ont dit que c’était évident. Il existe des espèces de petite, moyenne et grande taille réparties sur plusieurs îles.

Îles du Lac Vuna Vuna

Îles du lagon Vuna Vuna du groupe de Nouvelle-Géorgie, Îles Salomon. Ce groupe d’îles héberge quatre espèces de chauves-souris hyposiderus, dont les deux espèces mentionnées dans l’étude de l’évolution convergente à travers l’archipel. Crédit : RG Moyle

Cependant, Moyle et ses collaborateurs disposaient d’analyses plus modernes. En séquence ADN À partir des chauves-souris collectées sur le terrain (ainsi que de spécimens provenant de collections de musées), l’équipe a découvert que les grandes et très grandes espèces de chauves-souris n’étaient en réalité pas étroitement apparentées.

READ  Des physiciens découvrent une particule hybride dans un matériau magnétique bidimensionnel inhabituel

« Cela signifie que ces populations sont parvenues d’une manière ou d’une autre à cette taille et à cette apparence corporelles identiques, non pas en étant étroitement liées – mais nous pensons normalement que les objets d’apparence identique le sont parce qu’ils sont vraiment étroitement liés », a déclaré Moyle. « Cela soulève des questions telles que ce qui est si unique sur ces îles, que vous puissiez converger en termes de taille et d’apparence corporelle vers des classes de taille vraiment cohérentes sur différentes îles. »

L’équipe a effectué des mesures précises sur des chauves-souris de différentes îles, confirmant ainsi les travaux antérieurs menés par des scientifiques des Îles Salomon.

« Toutes les grandes îles de différentes îles regroupées dans leurs mesures », a déclaré Moyle. « Ce n’est pas seulement que les premiers biologistes ont fait une erreur. Ils les ont regardés et ont dit : « Oh, oui, c’est la même chose. » Et en fait, ce n’est pas le cas. Nous les avons mesurés, et ils sont tous regroupés. , même s’il s’agit d’espèces différentes. Nous avons vérifié – une espèce Quoi – à partir de ce travail morphologique précédent.

Chauve-souris des Îles Salomon

Photographies du site de Guadalcanal montrant la différence de taille entre les espèces sympatriques H. diadema et H. des dinosaures. Crédit : Lavery et coll.

« Lorsque nous avons créé des arbres généalogiques à l’aide de l’ADN de chauve-souris, nous avons découvert que ce que nous pensions n’être qu’une seule espèce de grande chauve-souris dans les Îles Salomon était en réalité un cas où de plus grandes chauves-souris évoluaient à partir d’espèces plus petites plusieurs fois dans différentes îles », a déclaré Lavery. « Nous pensons que ces chauves-souris plus grosses ont peut-être évolué pour profiter de proies que les chauves-souris plus petites ne mangent pas. »

READ  Voici quelques-unes des plus grandes missions spatiales en 2023

Implications pour la conservation et la biologie évolutive

Derad a déclaré que le travail pourrait être « extrêmement important » pour les efforts de conservation visant à identifier les unités évolutives importantes dans ce groupe.

« La taille de l’objet a induit la classification en erreur », a déclaré Dirad. « Il s’avère que les très grandes populations de chauves-souris de chaque île sont fondamentalement génétiquement uniques et méritent d’être préservées. Comprendre cela est vraiment utile. Il y a des problèmes de déforestation. Si nous ne savons pas si ces populations sont uniques, il est difficile de savoir si elles sont uniques. Nous aurions dû faire un effort pour le préserver.

Selon DeCicco, la nouvelle compréhension des chauves-souris à nez feuille était fascinante sur le plan purement théorique.

« Nous étudions les processus évolutifs qui conduisent à la biodiversité », a-t-il déclaré. « Cela montre que la nature est beaucoup plus complexe. Nous, les humains, aimons essayer de trouver des modèles, et les chercheurs aiment essayer de trouver des règles qui s’appliquent à de larges groupes d’organismes. C’est assez fascinant de trouver des exceptions à ces règles.  » À partir de différents taxons sur de nombreuses îles différentes – une grande et une petite, ou deux espèces étroitement apparentées qui diffèrent d’une manière ou d’une autre dans la répartition de leur environnement, nous constatons qu’il existe de nombreux scénarios évolutifs différents. cela pourrait produire le même modèle.

Référence : « Évolution parallèle dans un archipel insulaire révélée par le séquençage du génome des chauves-souris à nez feuille Hipposideros » par Tyrone H Lavery, Devon A DeRaad, Piokera S Holland, Karen V Olson, Lucas H DeCicco, Jennifer M Seddon, Luke KP Leung et Robert . JMuel, le 08 mars 2024, développement.
est ce que je: 10.1093/évolut/qpae039

READ  Les chercheurs pensent que des empreintes de dinosaures datant de 200 millions d'années ont été découvertes sur la côte du Pays de Galles

Continue Reading

science

Une équipe de la NASA dirigée par un scientifique d’origine indienne a révélé la raison de la température élevée de la zone d’amarrage du soleil.

Published

on

Une équipe de la NASA dirigée par un scientifique d’origine indienne a révélé la raison de la température élevée de la zone d’amarrage du soleil.
NEW DELHI : Le mystère a toujours entouré la relation entre la zone ensoleillée et son ventre Couches de l’atmosphère Il subit un processus de chauffage impressionnant allant de 10 000 degrés Fahrenheit à près de 1 million de degrés Fahrenheit, soit 100 fois plus chaud que la surface brillante adjacente. Des recherches récentes, dirigées par le scientifique Sovik Bose, ont mis en lumière augmentation de la température Mécanisme d’action à l’intérieur de la mousse.
La recherche a utilisé des données recueillies auprès de NASALa fusée-sonde High-Resolution Imaging Coronal (Hi-C) et la mission Interface Region Imaging Spectrograph (IRIS), combinées à des simulations 3D complexes, pour révéler le rôle potentiel des courants électriques dans le processus de chauffage.
Dans cette région se trouve un réseau complexe de lignes de champ magnétique, ressemblant à des brins invisibles de spaghetti. Cet enchevêtrement magnétique génère des courants électriques qui chauffent les matériaux sur une large plage de températures, allant de 10 000 à 1 million de degrés Fahrenheit. Ce réchauffement localisé dans la mousse semble compléter la chaleur émanant de la couronne torride de plusieurs millions de degrés au-dessus. Ces résultats, détaillés dans Nature Astronomy du 15 avril, fournissent des informations importantes pour comprendre pourquoi la couronne solaire dépasse la température de surface.
« Grâce à nos observations à haute résolution et à nos simulations numériques avancées, nous sommes en mesure de découvrir une partie de ce puzzle qui nous laisse perplexes depuis un quart de siècle », a déclaré l’auteur Sovik Bose, chercheur scientifique chez Lockheed Martin Solar et Lockheed Martin Solar. Laboratoire d’astrophysique, Bay Area Environmental Institute et NASA Ames Research Center dans la Silicon Valley, en Californie. « Cependant, ce n’est qu’une partie du puzzle, cela ne résout pas tout le problème. »
D’autres opportunités de percer le mystère se profilent à l’horizon : Hi-C devrait être lancé à nouveau ce mois-ci pour capturer une éruption solaire, incluant probablement une autre région d’algues en plus d’IRIS. Cependant, pour obtenir des observations suffisamment complètes pour montrer comment la couronne et les algues se réchauffent, scientifiques et ingénieurs développent activement de nouveaux instruments pour la future mission Multi-Eaperture Solar Energy Explorer (MUSE).
La structure minuscule, brillante et inégale constituée de plasma dans l’atmosphère solaire présente une ressemblance frappante avec les plantes terrestres, ce qui a amené les scientifiques à l’appeler « algues ». Cette mousse a été découverte pour la première fois en 1999 par la mission TRACE de la NASA. Ils se forment principalement autour du centre des amas de taches solaires, là où les conditions magnétiques sont fortes.

Continue Reading

science

Malgré le changement climatique mondial, la Terre est étonnamment pauvre en carbone

Published

on

Malgré le changement climatique mondial, la Terre est étonnamment pauvre en carbone

Malgré toutes les inquiétudes suscitées par la quantité de carbone qui fait des ravages sur notre climat mondial, la Terre est remarquablement pauvre en carbone. Le carbone n’est qu’un oligoélément dans la Terre et un élément mineur dans le Soleil, écrivent les auteurs de cet article. Le sixième élément : Comment le carbone façonne notre mondesera publié le mois prochain par Princeton University Press.

Malgré les problèmes liés à l’utilisation par l’humanité des combustibles fossiles à base de carbone, notre existence entière dépend de la capacité de cet élément à créer une chimie riche, ont déclaré les co-auteurs Theodore B. Snow, professeur émérite à l’Université du Colorado à Boulder et Don Brownlee, professeur émérite à l’Université du Colorado à Boulder. Université de Washington à Seattle, P.S.

Ce qui est surprenant, c’est la rareté du carbone sur la Terre entière ; L’abondance totale de carbone n’est que de quelques centaines de parties par million, m’a dit Brownlee par e-mail. Cependant, sur Terre, le carbone était certainement l’élixir crucial qui a conduit à l’évolution des molécules complexes et des voies chimiques qui ont rendu la vie possible, dit-il.

Ironiquement, la plupart des objets riches en carbone du système solaire ne sont pas le soleil ou les planètes, mais des corps plus petits tels que les comètes et les astéroïdes, les éléments constitutifs des planètes restantes qui ont survécu à des collisions planétaires ou ont été éjectées des orbites solaires pendant plus de 4 milliards d’années. , écrivent Snow et Brownlee.

Cependant, la Terre a une structure en couches et le carbone – le sixième élément du tableau périodique – est présent à tous les niveaux, depuis le sommet de l’atmosphère jusqu’au cœur de notre planète.

Pourquoi la Terre est-elle si pauvre en carbone ?

Brownlee dit que la Terre s’est formée dans la zone habitable du Soleil, où le carbone n’a pas formé de solides de manière efficace. Il dit que la Terre est très pauvre en carbone par rapport aux astéroïdes et comètes typiques qui se sont formés beaucoup plus gros que le Soleil et sont souvent considérés comme des éléments constitutifs préservés des planètes solides.

Mais le carbone peut causer des problèmes.

Le carbone est le seul élément chimique qui possède sa propre taxe ; Nous dépensons des milliards de dollars inconnus pour apprendre à y faire face ; Brownlee dit que nous entendons sans cesse dire que notre utilisation du carbone détruira la Terre. Il affirme que la production de combustibles fossiles est un cadeau de la nature, mais que le réchauffement climatique qui en résulte a de nombreux effets graves.

Défis à venir

Il affirme que la hausse des températures due à l’accumulation de dioxyde de carbone entraînera une élévation du niveau de la mer et entraînera des changements dans les zones de culture et des extrêmes climatiques mondiaux, mais il est impossible que tout ce que les humains peuvent faire actuellement puisse détruire notre planète.

Malgré sa relative rareté ici sur Terre, la capacité du carbone à se lier à des éléments pour former un nombre presque infini de composés est probablement la raison pour laquelle nous sommes ici pour en parler. Mais la vie dans notre système solaire aurait-elle pu fonctionner différemment et s’appuyer sur un élément comme le silicium au lieu du carbone ?

Le silicium n’est pas un élément cosmiquement rare (c’est le septième élément le plus abondant dans la galaxie), mais le carbone est environ quatre fois plus abondant, notent Snow et Brownlee. Ils ont écrit que le silicium est plus abondant sur Terre (26 % en masse) que le carbone.

Quant à trouver du silicium ici dans notre système solaire ?

Des météorites primordiales chaudes, humides et chargées de silicium ont été chauffées au cours des premiers millions d’années de l’histoire du système solaire, explique Brownlee. Il déclare : Nous avons examiné des milliers d’échantillons lunaires, des milliers de météorites et même des échantillons de comètes, mais nous n’avons trouvé aucune preuve que le silicium contenu dans ces matériaux vieux d’un milliard d’années était impliqué dans un processus pouvant être considéré comme une vie.

Qu’en est-il de la vie à base de silicium en dehors de votre système solaire ?

Même si nous disposions de milliers d’excellents spectres d’exoplanètes, nous ne serions probablement pas en mesure de connaître la vie à base de silicium, car il n’y aurait pas de gaz contenant du silicium dans leur atmosphère, explique Brownlee. Il affirme que la vie sur Terre est plus facile à découvrir pour les extraterrestres car ils ont créé une atmosphère exotique (azote, oxygène et dioxyde de carbone) qui ne peut exister par des processus chimiques normaux.

Comment le carbone est-il réparti au sein de notre galaxie ?

Brownlee dit qu’il existe peut-être une quantité idéale de carbone pour qu’il y ait de la vie sur une planète, mais qui sait ce que c’est ? Une trop grande quantité pourrait conduire à de mauvaises atmosphères (comme Vénus), et trop peu pourrait être trop faible pour que la vie puisse commencer, dit-il.

Des questions fondamentales demeurent

L’une de ces questions est de savoir comment le carbone parvient réellement à atteindre des planètes semblables à la Terre.

Le Soleil et le système solaire primitif contenaient d’énormes quantités de carbone (le quatrième élément le plus abondant après l’hydrogène, l’hélium et l’oxygène), mais la Terre était formée de matériaux solides et la plupart des atomes de carbone étaient sous forme de monoxyde de carbone gazeux, explique Brownlee. .

C’est juste ce genre de puzzle Le sixième élément Points forts. Approfondi et complet, ce livre sera un atout pour les bibliothèques savantes pour les décennies à venir.

READ  Des physiciens découvrent une particule hybride dans un matériau magnétique bidimensionnel inhabituel
Continue Reading

Trending

Copyright © 2023