Connect with us

science

Des chercheurs ont découvert que la fumigation du sol est efficace contre les ravageurs des pommes de terre.

Published

on

Des chercheurs ont découvert que la fumigation du sol est efficace contre les ravageurs des pommes de terre.

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Nématode à kyste jaune de la pomme de terre (Globodera rostochiensis) dans le système racinaire. Photographie : Bonsak Hammeras, NIBIO

× Fermer

Nématode à kyste jaune de la pomme de terre (Globodera rostochiensis) dans le système racinaire. Photographie : Bonsak Hammeras, NIBIO

Le sol regorge de micro-organismes bénéfiques, mais il existe également des organismes qui attaquent les cultures agricoles, affectant la croissance, la productivité et la qualité des plantes. Tous les sols à transporter dans le cadre de projets d'infrastructure ou de tout autre projet doivent être exempts de phytoravageurs. Une façon de neutraliser ces parasites consiste à fumiger le sol à haute température.

Cette technologie est également applicable aux déchets générés par les industries de la pomme de terre et de l'oignon pour le recyclage de la biomasse. Dans un nouveau projet, les chercheurs de NIBIO ont obtenu une image plus claire des températures et de la durée nécessaires pour neutraliser différents types de ravageurs.

Mourir à 70°C pendant trois minutes

Un phytoravageur trouvé en Norvège est le nématode à kyste de la pomme de terre (PCN) (Globodera rostochiensis).

Ces nématodes attaquent les racines de pommes de terre, sont incroyablement résistants, ont un potentiel de propagation élevé et constituent un défi à contrôler. Les chercheurs du NIBIO ont testé la souche Ro1 de cette espèce.

« Il existe une technologie disponible dans le commerce pour la clarification du sol, et nous avons testé le SoilSaver de SoilSteam », explique Marit Skotrud-Vinatro, chercheuse au NIBIO. « C'est une machine intégrée dans un conteneur. Le sol est alimenté avant d'être traité et stérilisé avec de la vapeur chaude. .»

« Avant l'essai SoilSaver, nous stérilisions les mauvaises herbes, les champignons et les PCN dans le sol dans des conditions contrôlées. Pour les PCN, nous avons testé à la fois la survie directe et l'infectiosité. Les résultats montrent que les différentes espèces impliquées dans l'essai nécessitent des températures différentes pour mourir. » .

« Le PCN jaune de la souche Ro1 doit être exposé à au moins 70°C pendant trois minutes, tandis que le PCN blanc (Globodera pallida) a besoin d'une température légèrement plus élevée. Pour cette espèce, nous n'avons toujours pas de données claires. Après des tests dans des conditions contrôlées et Dans ces conditions, nous avons également testé les PCN jaunes dans une machine SoilSaver à grande échelle, et les résultats étaient les mêmes que lors du traitement en laboratoire : les nématodes à kystes jaunes de la pomme de terre meurent lorsqu'ils sont exposés à de la vapeur à haute température au fil du temps.

Pas pour les champs infectés

Bien que les machines stationnaires comme SoilSaver fonctionnent bien, elles ne sauvent pas la vie des champs déjà infestés.

« Sur le terrain, les conditions de traitement seront très différentes de celles d'une machine stationnaire comme le SoilSaver. Il faudra probablement utiliser une machine automotrice ou une machine entraînée par un tracteur, et nous devrons mener nos propres expériences pour tester l'effet. Ici », poursuit le chercheur du NIBIO.

« Les champs infectés par les PCN blancs sont mis en quarantaine pendant 40 ans. Dans ces champs, aucune culture ni enlèvement de terre n'est autorisé. Il est courant de convertir ces zones en prairies à long terme », explique Scottrud-Vinatro.

Tout meurt, mais ressuscite

Les machines telles que SoilSaver sont conçues pour être utilisées dans des sols excavés où des parasites indésirables des plantes ont été identifiés afin que le sol puisse être réutilisé. Au cours du processus de fumigation, différents organismes meurent à différentes températures.

« Certains meurent à 60°C, mais d'autres peuvent survivre à des températures allant jusqu'à 100°C. Dans un tel processus, la plupart des organismes bénéfiques meurent également. Il est relativement facile de raviver le sol en ajoutant d'autres terres ou du compost biologique. Et ainsi déclare Eric Juner, chercheur au NIBIO, qui a examiné la santé du sol après les expériences : « Le sol se portera bien biologiquement et relativement rapidement. L’alternative est souvent un sol artificiel composé uniquement de sous-sol et de compost, qui est également dépourvu de toute vie naturelle dans le sol.

« SoilSaver ne tue pas la vie existante du sol et constitue donc un processus durable. La fumigation du sol n'a pas d'effets chimiquement évidents autres qu'une certaine libération de nutriments liés aux organismes du sol. En fonction du type de sol traité et des conditions de traitement, la fumigation le processus peut entraîner un compactage du sol et une perte d’une partie de sa structure », conclut Juner.

Fourni par l'Institut norvégien de recherche bioéconomique

READ  Les chercheurs développent des commutateurs entièrement optiques qui pourraient conduire à des processeurs informatiques plus rapides
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Comment les chauves-souris de Salomon défient leur apparence

Published

on

Comment les chauves-souris de Salomon défient leur apparence

Les chercheurs ont découvert une diversité génétique significative parmi les chauves-souris à nez feuille des Îles Salomon, révélant que les chauves-souris de tailles similaires sur différentes îles sont des espèces génétiquement distinctes. Cette découverte remet en question les classifications morphologiques précédentes et a des implications pour la conservation et la compréhension des processus évolutifs. Crédit : SciTechDaily.com

L’analyse génétique des chauves-souris à nez feuille des Îles Salomon montre une diversité inattendue, suggérant des besoins de conservation uniques et remettant en question les classifications précédentes basées sur la taille.

Des chercheurs de l’Université de Melbourne et de l’Université du Kansas ont découvert une diversité génétique significative parmi les chauves-souris à nez feuille des Îles Salomon, malgré leur apparence similaire dans différentes îles. Cette recherche est publiée dans la revue développementCollecte d’échantillons sur le terrain et analyse génétique.

« Il s’agit d’un genre de chauves-souris appelé Hipposideros multiple Classer « Partout en Asie du Sud-Est dans le Pacifique », a déclaré le co-auteur Rob Moyle, conservateur principal en ornithologie à l’Institut de la biodiversité et au Musée d’histoire naturelle de l’UCLA, dont le laboratoire a effectué une grande partie des recherches. « Aux Îles Salomon, où nous effectuons beaucoup de travaux de terrain, il peut y avoir quatre ou cinq espèces différentes sur chaque île, et elles sont analysées en termes de taille corporelle : petites, moyennes et grandes – ou s’il y en a. plus de trois espèces, il y en a de petites. Sur une île, il y en a cinq, moyennes, grandes et très grandes, il y a donc une petite île supplémentaire.

Détails et résultats de l’étude

Selon Rob Moyle, qui est également professeur de biologie évolutive à l’UCLA, des recherches antérieures basées uniquement sur des caractéristiques physiques ont conclu que les chauves-souris de taille similaire provenant de différentes îles appartenaient toutes à la même espèce. « Vous vous déplacez d’île en île et vous trouverez des espèces de taille moyenne semblables à celles d’autres îles », a-t-il déclaré. Les biologistes ont toujours examiné ces choses et ont dit que c’était évident. Il existe des espèces de petite, moyenne et grande taille réparties sur plusieurs îles.

Îles du Lac Vuna Vuna

Îles du lagon Vuna Vuna du groupe de Nouvelle-Géorgie, Îles Salomon. Ce groupe d’îles héberge quatre espèces de chauves-souris hyposiderus, dont les deux espèces mentionnées dans l’étude de l’évolution convergente à travers l’archipel. Crédit : RG Moyle

Cependant, Moyle et ses collaborateurs disposaient d’analyses plus modernes. En séquence ADN À partir des chauves-souris collectées sur le terrain (ainsi que de spécimens provenant de collections de musées), l’équipe a découvert que les grandes et très grandes espèces de chauves-souris n’étaient en réalité pas étroitement apparentées.

READ  Devenir vert : les océans de la Terre changent en raison du changement climatique

« Cela signifie que ces populations sont parvenues d’une manière ou d’une autre à cette taille et à cette apparence corporelles identiques, non pas en étant étroitement liées – mais nous pensons normalement que les objets d’apparence identique le sont parce qu’ils sont vraiment étroitement liés », a déclaré Moyle. « Cela soulève des questions telles que ce qui est si unique sur ces îles, que vous puissiez converger en termes de taille et d’apparence corporelle vers des classes de taille vraiment cohérentes sur différentes îles. »

L’équipe a effectué des mesures précises sur des chauves-souris de différentes îles, confirmant ainsi les travaux antérieurs menés par des scientifiques des Îles Salomon.

« Toutes les grandes îles de différentes îles regroupées dans leurs mesures », a déclaré Moyle. « Ce n’est pas seulement que les premiers biologistes ont fait une erreur. Ils les ont regardés et ont dit : « Oh, oui, c’est la même chose. » Et en fait, ce n’est pas le cas. Nous les avons mesurés, et ils sont tous regroupés. , même s’il s’agit d’espèces différentes. Nous avons vérifié – une espèce Quoi – à partir de ce travail morphologique précédent.

Chauve-souris des Îles Salomon

Photographies du site de Guadalcanal montrant la différence de taille entre les espèces sympatriques H. diadema et H. des dinosaures. Crédit : Lavery et coll.

« Lorsque nous avons créé des arbres généalogiques à l’aide de l’ADN de chauve-souris, nous avons découvert que ce que nous pensions n’être qu’une seule espèce de grande chauve-souris dans les Îles Salomon était en réalité un cas où de plus grandes chauves-souris évoluaient à partir d’espèces plus petites plusieurs fois dans différentes îles », a déclaré Lavery. « Nous pensons que ces chauves-souris plus grosses ont peut-être évolué pour profiter de proies que les chauves-souris plus petites ne mangent pas. »

READ  Comment les LED économes en énergie perturbent-elles la vie animale et nous aveuglent-elles sur le ciel nocturne ?

Implications pour la conservation et la biologie évolutive

Derad a déclaré que le travail pourrait être « extrêmement important » pour les efforts de conservation visant à identifier les unités évolutives importantes dans ce groupe.

« La taille de l’objet a induit la classification en erreur », a déclaré Dirad. « Il s’avère que les très grandes populations de chauves-souris de chaque île sont fondamentalement génétiquement uniques et méritent d’être préservées. Comprendre cela est vraiment utile. Il y a des problèmes de déforestation. Si nous ne savons pas si ces populations sont uniques, il est difficile de savoir si elles sont uniques. Nous aurions dû faire un effort pour le préserver.

Selon DeCicco, la nouvelle compréhension des chauves-souris à nez feuille était fascinante sur le plan purement théorique.

« Nous étudions les processus évolutifs qui conduisent à la biodiversité », a-t-il déclaré. « Cela montre que la nature est beaucoup plus complexe. Nous, les humains, aimons essayer de trouver des modèles, et les chercheurs aiment essayer de trouver des règles qui s’appliquent à de larges groupes d’organismes. C’est assez fascinant de trouver des exceptions à ces règles.  » À partir de différents taxons sur de nombreuses îles différentes – une grande et une petite, ou deux espèces étroitement apparentées qui diffèrent d’une manière ou d’une autre dans la répartition de leur environnement, nous constatons qu’il existe de nombreux scénarios évolutifs différents. cela pourrait produire le même modèle.

Référence : « Évolution parallèle dans un archipel insulaire révélée par le séquençage du génome des chauves-souris à nez feuille Hipposideros » par Tyrone H Lavery, Devon A DeRaad, Piokera S Holland, Karen V Olson, Lucas H DeCicco, Jennifer M Seddon, Luke KP Leung et Robert . JMuel, le 08 mars 2024, développement.
est ce que je: 10.1093/évolut/qpae039

READ  Golden Bird's Eye révèle la dynamique de l'interface de la Terre avec l'espace

Continue Reading

science

Une équipe de la NASA dirigée par un scientifique d’origine indienne a révélé la raison de la température élevée de la zone d’amarrage du soleil.

Published

on

Une équipe de la NASA dirigée par un scientifique d’origine indienne a révélé la raison de la température élevée de la zone d’amarrage du soleil.
NEW DELHI : Le mystère a toujours entouré la relation entre la zone ensoleillée et son ventre Couches de l’atmosphère Il subit un processus de chauffage impressionnant allant de 10 000 degrés Fahrenheit à près de 1 million de degrés Fahrenheit, soit 100 fois plus chaud que la surface brillante adjacente. Des recherches récentes, dirigées par le scientifique Sovik Bose, ont mis en lumière augmentation de la température Mécanisme d’action à l’intérieur de la mousse.
La recherche a utilisé des données recueillies auprès de NASALa fusée-sonde High-Resolution Imaging Coronal (Hi-C) et la mission Interface Region Imaging Spectrograph (IRIS), combinées à des simulations 3D complexes, pour révéler le rôle potentiel des courants électriques dans le processus de chauffage.
Dans cette région se trouve un réseau complexe de lignes de champ magnétique, ressemblant à des brins invisibles de spaghetti. Cet enchevêtrement magnétique génère des courants électriques qui chauffent les matériaux sur une large plage de températures, allant de 10 000 à 1 million de degrés Fahrenheit. Ce réchauffement localisé dans la mousse semble compléter la chaleur émanant de la couronne torride de plusieurs millions de degrés au-dessus. Ces résultats, détaillés dans Nature Astronomy du 15 avril, fournissent des informations importantes pour comprendre pourquoi la couronne solaire dépasse la température de surface.
« Grâce à nos observations à haute résolution et à nos simulations numériques avancées, nous sommes en mesure de découvrir une partie de ce puzzle qui nous laisse perplexes depuis un quart de siècle », a déclaré l’auteur Sovik Bose, chercheur scientifique chez Lockheed Martin Solar et Lockheed Martin Solar. Laboratoire d’astrophysique, Bay Area Environmental Institute et NASA Ames Research Center dans la Silicon Valley, en Californie. « Cependant, ce n’est qu’une partie du puzzle, cela ne résout pas tout le problème. »
D’autres opportunités de percer le mystère se profilent à l’horizon : Hi-C devrait être lancé à nouveau ce mois-ci pour capturer une éruption solaire, incluant probablement une autre région d’algues en plus d’IRIS. Cependant, pour obtenir des observations suffisamment complètes pour montrer comment la couronne et les algues se réchauffent, scientifiques et ingénieurs développent activement de nouveaux instruments pour la future mission Multi-Eaperture Solar Energy Explorer (MUSE).
La structure minuscule, brillante et inégale constituée de plasma dans l’atmosphère solaire présente une ressemblance frappante avec les plantes terrestres, ce qui a amené les scientifiques à l’appeler « algues ». Cette mousse a été découverte pour la première fois en 1999 par la mission TRACE de la NASA. Ils se forment principalement autour du centre des amas de taches solaires, là où les conditions magnétiques sont fortes.

Continue Reading

science

Malgré le changement climatique mondial, la Terre est étonnamment pauvre en carbone

Published

on

Malgré le changement climatique mondial, la Terre est étonnamment pauvre en carbone

Malgré toutes les inquiétudes suscitées par la quantité de carbone qui fait des ravages sur notre climat mondial, la Terre est remarquablement pauvre en carbone. Le carbone n’est qu’un oligoélément dans la Terre et un élément mineur dans le Soleil, écrivent les auteurs de cet article. Le sixième élément : Comment le carbone façonne notre mondesera publié le mois prochain par Princeton University Press.

Malgré les problèmes liés à l’utilisation par l’humanité des combustibles fossiles à base de carbone, notre existence entière dépend de la capacité de cet élément à créer une chimie riche, ont déclaré les co-auteurs Theodore B. Snow, professeur émérite à l’Université du Colorado à Boulder et Don Brownlee, professeur émérite à l’Université du Colorado à Boulder. Université de Washington à Seattle, P.S.

Ce qui est surprenant, c’est la rareté du carbone sur la Terre entière ; L’abondance totale de carbone n’est que de quelques centaines de parties par million, m’a dit Brownlee par e-mail. Cependant, sur Terre, le carbone était certainement l’élixir crucial qui a conduit à l’évolution des molécules complexes et des voies chimiques qui ont rendu la vie possible, dit-il.

Ironiquement, la plupart des objets riches en carbone du système solaire ne sont pas le soleil ou les planètes, mais des corps plus petits tels que les comètes et les astéroïdes, les éléments constitutifs des planètes restantes qui ont survécu à des collisions planétaires ou ont été éjectées des orbites solaires pendant plus de 4 milliards d’années. , écrivent Snow et Brownlee.

Cependant, la Terre a une structure en couches et le carbone – le sixième élément du tableau périodique – est présent à tous les niveaux, depuis le sommet de l’atmosphère jusqu’au cœur de notre planète.

Pourquoi la Terre est-elle si pauvre en carbone ?

Brownlee dit que la Terre s’est formée dans la zone habitable du Soleil, où le carbone n’a pas formé de solides de manière efficace. Il dit que la Terre est très pauvre en carbone par rapport aux astéroïdes et comètes typiques qui se sont formés beaucoup plus gros que le Soleil et sont souvent considérés comme des éléments constitutifs préservés des planètes solides.

Mais le carbone peut causer des problèmes.

Le carbone est le seul élément chimique qui possède sa propre taxe ; Nous dépensons des milliards de dollars inconnus pour apprendre à y faire face ; Brownlee dit que nous entendons sans cesse dire que notre utilisation du carbone détruira la Terre. Il affirme que la production de combustibles fossiles est un cadeau de la nature, mais que le réchauffement climatique qui en résulte a de nombreux effets graves.

Défis à venir

Il affirme que la hausse des températures due à l’accumulation de dioxyde de carbone entraînera une élévation du niveau de la mer et entraînera des changements dans les zones de culture et des extrêmes climatiques mondiaux, mais il est impossible que tout ce que les humains peuvent faire actuellement puisse détruire notre planète.

Malgré sa relative rareté ici sur Terre, la capacité du carbone à se lier à des éléments pour former un nombre presque infini de composés est probablement la raison pour laquelle nous sommes ici pour en parler. Mais la vie dans notre système solaire aurait-elle pu fonctionner différemment et s’appuyer sur un élément comme le silicium au lieu du carbone ?

Le silicium n’est pas un élément cosmiquement rare (c’est le septième élément le plus abondant dans la galaxie), mais le carbone est environ quatre fois plus abondant, notent Snow et Brownlee. Ils ont écrit que le silicium est plus abondant sur Terre (26 % en masse) que le carbone.

Quant à trouver du silicium ici dans notre système solaire ?

Des météorites primordiales chaudes, humides et chargées de silicium ont été chauffées au cours des premiers millions d’années de l’histoire du système solaire, explique Brownlee. Il déclare : Nous avons examiné des milliers d’échantillons lunaires, des milliers de météorites et même des échantillons de comètes, mais nous n’avons trouvé aucune preuve que le silicium contenu dans ces matériaux vieux d’un milliard d’années était impliqué dans un processus pouvant être considéré comme une vie.

Qu’en est-il de la vie à base de silicium en dehors de votre système solaire ?

Même si nous disposions de milliers d’excellents spectres d’exoplanètes, nous ne serions probablement pas en mesure de connaître la vie à base de silicium, car il n’y aurait pas de gaz contenant du silicium dans leur atmosphère, explique Brownlee. Il affirme que la vie sur Terre est plus facile à découvrir pour les extraterrestres car ils ont créé une atmosphère exotique (azote, oxygène et dioxyde de carbone) qui ne peut exister par des processus chimiques normaux.

Comment le carbone est-il réparti au sein de notre galaxie ?

Brownlee dit qu’il existe peut-être une quantité idéale de carbone pour qu’il y ait de la vie sur une planète, mais qui sait ce que c’est ? Une trop grande quantité pourrait conduire à de mauvaises atmosphères (comme Vénus), et trop peu pourrait être trop faible pour que la vie puisse commencer, dit-il.

Des questions fondamentales demeurent

L’une de ces questions est de savoir comment le carbone parvient réellement à atteindre des planètes semblables à la Terre.

Le Soleil et le système solaire primitif contenaient d’énormes quantités de carbone (le quatrième élément le plus abondant après l’hydrogène, l’hélium et l’oxygène), mais la Terre était formée de matériaux solides et la plupart des atomes de carbone étaient sous forme de monoxyde de carbone gazeux, explique Brownlee. .

C’est juste ce genre de puzzle Le sixième élément Points forts. Approfondi et complet, ce livre sera un atout pour les bibliothèques savantes pour les décennies à venir.

READ  Les astronomes parcourent les archives du télescope et trouvent une rafale d'une microseconde
Continue Reading

Trending

Copyright © 2023