Connect with us

science

Supraconductivité à haute température : exploration du couplage électron-phonon en quadrature

Published

on

Supraconductivité à haute température : exploration du couplage électron-phonon en quadrature

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Une image conceptuelle de la formation des pôles quantiques. Les boules bleues représentent les ions chargés positivement dans le réseau matériel et les deux points rouges représentent les paires de Cooper. Crédit : Pavel A. Volkov.

× Fermer


Une image conceptuelle de la formation des pôles quantiques. Les boules bleues représentent les ions chargés positivement dans le réseau matériel et les deux points rouges représentent les paires de Cooper. Crédit : Pavel A. Volkov.

Nouvelle étude publié dans Lettres d’examen physique (PRL) explore le potentiel du couplage électron-phonon en quadrature pour améliorer la supraconductivité grâce à la formation de dipôles quantiques.

Le couplage électron-phonon est l’interaction entre les électrons et les vibrations dans un réseau appelé phonons. Cette interaction est cruciale pour la supraconductivité (conductivité électrique sans résistance) de certains matériaux car elle facilite la formation de paires de Cooper.

Les paires de Cooper sont des paires d’électrons liés entre eux via des interactions attractives. Lorsque ces paires de Cooper se condensent dans un état cohérent, nous obtenons des propriétés supraconductrices.

Le couplage électron-phonon peut être classé en fonction de sa dépendance au déplacement du phonon, c’est-à-dire la quantité de vibration du réseau. Le cas le plus courant est celui où la densité électronique est couplée linéairement aux déplacements du réseau, provoquant une distorsion du réseau pour entourer chaque électron.

Les chercheurs voulaient étudier si la supraconductivité des matériaux présentant un couplage quadratique pouvait être améliorée lorsque l’énergie d’interaction est proportionnelle au carré du décalage des phonons.

Phys.org s’est entretenu avec les co-auteurs de l’étude, Zhaoyu Han, Ph.D. Candidat à l’Université de Stanford et Dr Pavel Volkov, professeur adjoint au Département de physique de l’Université du Connecticut.

Parlant de sa motivation derrière la poursuite de ces recherches, Hahn a déclaré : « L’un de mes rêves a été d’identifier et de proposer de nouveaux mécanismes qui pourraient aider à atteindre la supraconductivité à haute température. »

« La supraconductivité du titanate de strontium dopé a été découverte il y a plus de 50 ans, mais son mécanisme reste une question ouverte, les mécanismes classiques étant improbables. C’est pourquoi j’ai commencé à rechercher des mécanismes alternatifs de couplage électron-phonon », a déclaré le Dr Volkov.

Le couplage linéaire et ses défis pour la supraconductivité

Comme mentionné précédemment, le couplage peut être classé comme linéaire ou quadratique.

Le couplage linéaire fait référence au scénario dans lequel le couplage est proportionnel au déplacement des phonons. En revanche, le couplage quadratique dépend du carré du décalage des phonons.

Ils peuvent être identifiés grâce à l’étude de la symétrie de la matière, aux observations expérimentales et aux cadres théoriques. Cependant, leurs effets sur la supraconductivité semblent très différents.

Le couplage linéaire, qui apparaît dans la plupart des matériaux supraconducteurs, est largement étudié en raison de sa prévalence dans de nombreux matériaux et de son cadre théorique.

Cependant, les supraconducteurs conventionnels dotés d’un couplage électron-phonon linéaire sont confrontés à des limites. Ces matériaux ont une faible température critique, qui est la température en dessous de laquelle un matériau peut présenter une supraconductivité.

« Les températures critiques de ces supraconducteurs sont généralement inférieures à 30 Kelvin ou -243,15 degrés Celsius. Cela est dû en partie au fait que l’énergie de liaison et l’énergie cinétique de la paire Cooper sont considérablement supprimées dans les régimes de couplage faible et fort, respectivement », a expliqué Hahn.

Dans le cas d’un couplage faible, les interactions électron-phonon sont faibles en raison de la faible énergie de liaison. En couplage fort, les interactions sont plus fortes, conduisant à une augmentation de la masse effective des paires de Cooper, ce qui conduit à la suppression de la supraconductivité.

Cependant, la suppression entrave tout effort visant à améliorer les températures critiques dans de tels matériaux en augmentant simplement la force de couplage, encourageant les chercheurs à explorer des matériaux dotés d’un couplage électron-phonon quadratique, qui n’est pas bien compris.

Modèle Holstein et pôles quantiques

Le modèle Holstein est un cadre théorique utilisé pour décrire l’interaction entre les électrons et les phonons. Il a déjà été utilisé pour étudier la physique générale du couplage linéaire électron-phonon.

Les chercheurs ont étendu le modèle Holstein pour inclure le couplage électron-phonon en quadrature dans leur étude.

Le modèle Holstein aide à calculer des quantités telles que l’énergie de liaison des paires de Cooper et la température critique des supraconducteurs.

Dans les matériaux conventionnels, la liaison des électrons médiée par les phonons conduit à la formation de paires de Cooper.

L’interaction est linéaire, ce qui signifie que la force de couplage augmente avec l’amplitude des vibrations du réseau. Cette interaction peut être comprise à l’aide des principes de la physique classique et est bien étayée par des observations expérimentales telles que les effets isotopiques.

Dans le cas d’une conjonction quadratique, la situation est complètement différente. En étendant le modèle Holstein pour inclure la dépendance du second ordre du couplage au déplacement des phonons, les chercheurs ont pris en compte les fluctuations quantiques (mouvement aléatoire) des phonons et leur énergie du point zéro (l’énergie des phonons à 0 K ).

Les électrons interagissent avec les fluctuations quantiques des phonons, formant un « dipôle quantique ». Contrairement au couplage linéaire, l’origine des interactions attractives est la mécanique quantique pure.

La supraconductivité est dans la limite du couplage faible et fort

Les chercheurs ont découvert que lorsque l’interaction électron-phonon est faible, le mécanisme par lequel les électrons s’apparient pour former des paires de Cooper n’est pas efficace, comme dans le cas linéaire. Il en résulte une température critique plus basse qui peut être affectée par la masse des ions (effet isotopique), mais d’une manière différente que dans le cas linéaire.

En d’autres termes, la (basse) température critique d’une substance peut changer considérablement selon les différentes masses atomiques.

En revanche, lorsque les interactions électron-phonon sont fortes, nous obtenons la formation de dipôles quantiques, qui peuvent devenir supraconducteurs à une température déterminée par leur masse effective et leur densité.

En dessous de la température critique, les condensateurs bipolaires quantiques peuvent se déplacer librement sans perturber le cristal. Plus de mouvement conduit à un état supraconducteur, plus stable et ayant une température critique plus élevée. Contrairement au mécanisme linéaire, la masse dipolaire quantique n’est que légèrement améliorée par le couplage, ce qui permet des températures critiques plus élevées.

« Notre travail montre que ce mécanisme permet des températures de transition plus élevées, au moins pour un couplage fort. Ce qui est également positif, c’est que ce mécanisme ne nécessite aucune condition préalable particulière pour être efficace, et il existe des conditions tout à fait réalistes dans lesquelles il sera dominant », a-t-il déclaré. expliqué. Dr Volkov.

« Sur la base des constantes physiques fondamentales liées aux solides, une estimation optimiste de la température critique pouvant être atteinte par ce mécanisme pourrait être de l’ordre de 100 K », a prédit Hahn.

Travail futur

« Une implication possible, tout d’abord, serait une augmentation de la température de transition de la supraconductivité. La supraconductivité dépend également de manière sensible des propriétés des électrons ; par conséquent, pour obtenir un couplage fort, nous proposons l’utilisation de super-réseaux spécialement conçus pour les électrons. » Le Dr Volkov a expliqué.

Les chercheurs affirment que la prochaine étape, en théorie, consisterait à trouver le régime optimal de force de couplage pour la supraconductivité. Les chercheurs espèrent également que les expérimentateurs exploreront les matériaux de super-réseau présentant de grands couplages électron-phonon quadratiques.

« Expérimentalement, la création de super-réseaux via la structuration ou l’utilisation d’interfaces entre des matériaux torsadés pourrait être une voie prometteuse pour atteindre le type de supraconductivité auquel nous nous attendons », a déclaré le Dr Volkov.

Hahn a également noté qu ‘ »il est important d’identifier les matériaux présentant de grands couplages électron-phonon quadratiques grâce à des calculs préliminaires, car cela n’a pas été systématiquement exploré ».

Plus d’information:
Zhaoyu Han et al., Supraconductivité dipolaire quantique à partir du couplage électron-phonon en quadrature, Lettres d’examen physique (2024). est ce que je: 10.1103/PhysRevLett.132.226001. sur arXiv: DOI : 10.48550/arxiv.2312.03844

Informations sur les magazines :
Lettres d’examen physique


arXiv


READ  Les scientifiques ont découvert que presque toutes les substances peuvent capter l'énergie de l'air
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

L’exploration préhistorique prend vie au Nebraska

Published

on

L’exploration préhistorique prend vie au Nebraska

Situé dans le coin nord-ouest du Nebraska, Géoparc Toadstool Ce parc est un trésor géologique qui offre un aperçu unique du passé préhistorique de la région. Le parc est connu pour ses superbes formations rocheuses constituées de bases étroites géantes surmontées de dalles de grès et de lits de fossiles ressemblant à des champignons. Il fait partie des prairies nationales d’Oglala et est affectueusement surnommé le « paysage lunaire ». BadlandsEn raison de son emplacement éloigné, c’est également un endroit idéal pour observer le ciel nocturne, donc si vous aimez photographier la Voie lactée ou compter les étoiles filantes derrière votre voiture ou votre tente, cet endroit vaut le détour. Le Service forestier des États-Unis gère le parc géologique Toadstool, qui s’efforce de préserver ses ressources géologiques et paléontologiques uniques.

Géologie et paysage

Le nom du parc vient de ces formations rocheuses inhabituelles ressemblant à des champignons, formées par l’érosion éolienne et hydrique pendant des millions d’années. Ces formations sont constituées de grès, d’argile et de cendres volcaniques, qui ont été sculptées par les forces de la nature pour prendre leurs formes actuelles. L’histoire de la région remonte à l’époque Oligocène, il y a environ 30 millions d’années. Durant cette période, la région était une vaste plaine inondable au climat chaud et humide. Au fil du temps, l’activité volcanique a déposé des couches de cendres qui, combinées aux sédiments d’anciennes rivières, ont créé les formations rocheuses disséminées dans le parc. Il regorge également de fossiles, dont certains sont visibles à l’œil nu, dans tout le parc. Ces paysages ont une apparence austère et surnaturelle et constituent une destination intéressante pour les passionnés de géologie et les amoureux de la nature.

Choses à faire

Le géoparc Toadstool attire les paléontologues en raison de sa richesse en fossiles. La région a donné lieu à la découverte de nombreux fossiles, notamment des fossiles d’anciens mammifères tels que des chevaux à trois doigts, des tortues géantes et des chats aux crocs acérés. Ces fossiles fournissent des informations précieuses sur les animaux qui parcouraient autrefois la région et ont contribué à la compréhension des écosystèmes préhistoriques.

Le sentier Fossil Loop Trail, long d’un kilomètre, traverse certains des sites fossilifères les plus importants du parc et des panneaux d’interprétation fournissent des informations détaillées sur eux et sur l’histoire géologique de la région. Bien que la collecte de fossiles soit interdite pour préserver la valeur scientifique du site, le parc offre un aperçu fascinant d’un passé lointain. Il existe d’autres sentiers plus longs tels que le Bison Trail (3 miles) et Sentier des Grandes Plaines (Faisant partie d’un vaste réseau de sentiers de ski de fond qui traverse le parc) offre un aperçu plus approfondi de l’histoire ancienne de la région. Le sentier des bisons se divise à mi-chemin du sentier d’interprétation Fossil Loop et suit le canyon sur trois milles jusqu’à Centre d’éducation et de recherche Hudson-MingCe centre de recherche est ouvert les vendredis et samedis de 9h à 16h30 pendant l’été et constitue l’un des meilleurs endroits pour voir des centaines de restes fossilisés des habitants les plus célèbres de Badland, Bison anticus, ancien bison disparu. Le parc géologique Toadstool comprend également une maison en terre reconstruite, qui donne un aperçu de la vie de l’un des premiers colons de la Prairie.

Mais la meilleure façon de profiter de la vue sur Toadstool est peut-être la nuit. Loin des lumières de la ville, le parc offre un ciel incroyablement clair et sombre, ce qui en fait un endroit idéal pour observer le ciel nocturne. Les formations rocheuses uniques du parc offrent une toile de fond époustouflante pour une astrophotographie épique.

Possibilités d’hébergement

Toadstool est à environ 20 miles de là Crawford Nebraska (ville la plus proche) ou à 50 miles de Hot Springs Dakota du Sud. Bien que vous puissiez y faire une excursion d’une journée, le parc propose un terrain de camping primitif doté d’équipements de base, notamment des tables de pique-nique et des foyers (sans eau), disponibles selon le principe du premier arrivé, premier servi. Le parc est ouvert toute l’année, mais les meilleures périodes pour le visiter sont le printemps et l’automne, lorsque le temps est doux. D’autres options d’hébergement sont disponibles à Crawford à partir de Ferme des Hautes Plainesun établissement et une ferme en activité datant des années 1880 avec des chalets et des terrains de camping à Parc d’État de Fort RobinsonLe musée de Fort Robinson abrite également des restes fossilisés de mammifères préhistoriques trouvés dans ces régions.

Toadstool Geopark est un trésor caché hors des sentiers battus du Midwest. Que vous soyez passionné de géologie, paléontologue ou que vous aimiez simplement explorer la nature, vous trouverez ici quelque chose d’intéressant. Marcher parmi les formations rocheuses uniques et imaginer les créatures anciennes qui parcouraient autrefois cette terre vous donne une véritable idée de l’histoire de la Terre sur des milliers d’années.

READ  Artemis III : la toute première mission habitée au pôle sud de la Lune, détaillée étape par étape par la NASA
Continue Reading

science

Expansion des génomes de champignons avec une adaptabilité polyvalente

Published

on

Expansion des génomes de champignons avec une adaptabilité polyvalente

Une étude publiée dans la revue Cell Genomics a révélé que différentes espèces de champignons Mycena possèdent des génomes étonnamment grands. On pensait auparavant que les champignons se nourrissaient uniquement de matière organique morte, mais ils possèdent divers gènes qui leur permettent de s’adapter à différents modes de vie. Notamment, les souches arctiques de Mycena présentent certains des génomes fongiques les plus massifs jamais découverts.

Ces champignons se caractérisent par une vaste expansion du génome, comprenant des gènes qui interagissent avec les plantes, une décomposition du carbone et des fonctions biologiques potentielles qui n’ont pas encore été identifiées. Ils contiennent également des éléments non codants répétitifs et des gènes acquis par transfert horizontal de gènes provenant de champignons non apparentés.

Le Dr Shingo Miyuchi de l’Institut des sciences et technologies d’Okinawa a expliqué que les spécimens mycéniens collectés dans le nord de l’Europe, y compris dans les régions arctiques, présentaient des génomes beaucoup plus grands que les espèces mycéniennes typiques. Les collaborateurs ont vérifié ces résultats, confirmant le caractère unique de ces génomes étendus chez les espèces arctiques de Mycena.

Francis Martin de l’INRAE ​​​​et de l’Université de Lorraine a souligné que malgré les coûts, les grands génomes des champignons mycènes arctiques sont susceptibles d’offrir la capacité de s’adapter et de se diversifier. Cet avantage évolutif est crucial dans les environnements extrêmes comme l’Arctique, à l’instar des observations de plantes.

L'image montre que le champignon mycena présente une expansion génétique importante, comprenant non seulement des gènes qui facilitent l'invasion des plantes, la décomposition du carbone et la réactivité, mais également des gènes dont les fonctions sont encore inconnues mais probablement importantes.
Les champignons mycènes présentent une expansion génétique importante, comprenant non seulement des gènes qui facilitent l’invasion des plantes, la décomposition du carbone et la réactivité, mais également des gènes dont les fonctions sont encore inconnues mais potentiellement importantes. Droits d’auteur : Arne Aronson et Christopher Harder

Les chercheurs visent à étudier la mycine, un décomposeur majeur des déchets forestiers, et son rôle dans le cycle du carbone. Malgré leur petite taille, les mycènes jouent un rôle crucial dans les écosystèmes. On pensait auparavant qu’ils se nourrissaient uniquement de matière organique morte, mais il a été découvert que certaines espèces de Mycena interagissent également avec des plantes vivantes.

READ  Un hélicoptère innovant de la NASA irradie des débris de vaisseaux spatiaux depuis Mars

Mycena est également connue pour sa bioluminescence. Des études antérieures sur cinq espèces de Mycènes ont exploré leur génome pour comprendre ce trait. Les chercheurs ont élargi leur étude pour inclure 24 espèces supplémentaires de Mycena et une espèce apparentée, Atheniella floridula, qui a diverses préférences pour les substrats tels que le bois et le feuillage. Ils ont comparé ces génomes avec 33 génomes d’autres espèces pour explorer les changements évolutifs et les différences dans les enzymes qui détruisent les parois cellulaires végétales en fonction de leur mode de vie.

Les chercheurs ont découvert que les champignons Mycenae possèdent des génomes beaucoup plus grands que prévu, affectant toutes les familles de gènes, quels que soient leurs comportements typiques. Cette expansion a été motivée par l’émergence de nouveaux gènes, la duplication de gènes, une augmentation des gènes produisant des enzymes pour décomposer les matières végétales, ainsi que des éléments plus transposables et des gènes transférés horizontalement à partir d’autres champignons.

Deux espèces arctiques possédaient les génomes les plus grands, bien plus grands que ceux des Mycènes de la zone tempérée, ce qui a surpris les chercheurs. Ils ont également découvert des gènes d’ascomycètes transférés à Mycène, y compris des espèces provenant de régions tempérées, suggérant des raisons peu claires pour leur grande taille, peut-être liées aux conditions arctiques.

Chez les plantes arctiques, les génomes peuvent être étendus par des éléments transposables ou une duplication complète par rapport à leurs parents tempérés. Des schémas évolutifs similaires peuvent se produire chez les champignons arctiques.

Håvard Cowsrud de l’Université d’Oslo souligne que le champignon Mycenae présente une transition en temps réel de la décomposition à la formation de relations symbiotiques, un processus qui aurait eu lieu il y a des millions d’années dans d’autres groupes fongiques.

READ  Des résultats surprenants - de nouveaux échantillons éclairent l'histoire et la composition de la lune

Christopher Boge Harder, également de l’Université d’Oslo, souligne que contrairement à de nombreux autres champignons, les mycènes peuvent adopter des modes de vie différents. Cette flexibilité se reflète dans la structure de leur génome.

Les résultats mettent également en évidence les défis liés à l’explication du comportement d’un organisme à partir de son seul génome.

Le Dr Miyashi, un data scientist passionné par les arts visuels, s’est inspiré des couleurs des bébés champignons tout en comparant les caractéristiques du génome fongique pour l’étude. Influencé par le peintre impressionniste français du XIXe siècle Pierre-Auguste Renoir, il a créé les personnages.

Le Dr Miyauchi se concentre actuellement sur le séquençage des génomes de champignons rares des grands fonds, qui diffèrent considérablement des champignons forestiers. Son objectif est d’exploiter le génome pour révéler des gènes, des enzymes et des métabolites uniques pour de futures applications biotechnologiques. Le Dr Miyashi espère que les organismes de financement reconnaîtront l’énorme potentiel de ce petit champignon.

Référence du magazine :

  1. Christopher Pogue Harder, Shingo Miyashi et al., Expansion holistique du génome fongique Mycena indépendamment des plantes hôtes ou des spécialisations du substrat. Génomique cellulaire. Identification numérique : 10.1016/j.xgen.2024.100586.

Continue Reading

science

Cinq clés pour motiver les étudiants

Published

on

Cinq clés pour motiver les étudiants

Continue Reading

Trending

Copyright © 2023