Connect with us

science

Les chercheurs ont créé une nouvelle phase de la matière – le cristal du temps

Published

on

Il y a un énorme effort mondial pour concevoir un ordinateur capable d’exploiter la puissance de la physique quantique, et il se heurte à de formidables obstacles techniques.

Mais de récents prototypes d’ordinateurs quantiques montrent des exploits remarquables dans la création d’un ordinateur quantique, qui sera capable d’effectuer des calculs d’une complexité sans précédent en utilisant la puissance de la physique quantique.

Time Crystal, une nouvelle phase de la matière qui se répète dans le temps. Il le fait indéfiniment sans aucun autre apport d’énergie. Comme une montre qui fonctionne éternellement sans piles.

La recherche de cette phase de la matière a finalement porté ses fruits.

Dans un article publié le 30 novembre dans Nature, une équipe de scientifiques de l’Université de Stanford, de Google Quantum AI, du Max Planck Institute for the Physics of Complex Systems et de l’Université d’Oxford détaillent leur création d’un cristal temporel à l’aide du matériel informatique quantique Sycamore de Google. .

« La vue d’ensemble est que nous prenons les appareils qui sont censés être les ordinateurs quantiques du futur et les considérons comme des systèmes quantiques complexes à part entière » a déclaré Matteo Ippolitti, chercheur postdoctoral à l’Université de Stanford et co-auteur principal de l’ouvrage. « Au lieu du calcul, nous avons mis l’ordinateur au travail comme une nouvelle plate-forme expérimentale pour percevoir et découvrir de nouvelles phases de la matière. »

« Les cristaux temporels sont un exemple frappant d’un nouveau type de phase quantique déséquilibrée de la matière », a déclaré Vedika Khemani, professeur adjoint de physique à l’Université de Stanford et auteur du document de recherche. « Alors qu’une grande partie de notre compréhension de la physique de la matière condensée dépend des systèmes d’équilibre, ces nouveaux dispositifs quantiques nous offrent une fenêtre fascinante sur de nouveaux systèmes hors d’équilibre en physique multicorps. »

Les ingrédients de base pour faire un cristal cette fois-ci sont les suivants : l’équivalent physique d’une mouche des fruits et quelque chose pour lui donner un coup de pouce. Drosophila Physics est le modèle d’Ising, un outil de longue date pour comprendre divers phénomènes physiques – y compris les transitions de phase et le magnétisme – qui consiste en un réseau où chaque position de particule occupe deux états qui sont représentés par un spin vers le haut ou vers le bas.

READ  Battre le gel : jusqu'à 11,5 millions de dollars pour un contrôle écologique de la glace et de la neige

« C’est une phase de la matière complètement robuste, où vous n’ajustez pas les paramètres ou les états, mais votre système est toujours quantitatif » a déclaré Sundy, professeur de physique à Oxford et co-auteur de l’article. « Il n’y a pas d’alimentation en énergie, il n’y a pas de drain d’énergie, cela dure pour toujours et cela implique de nombreuses particules hautement réactives. »

Bien que cela puisse sembler étrangement proche d’une « machine à mouvement perpétuel », un examen plus approfondi révèle que les cristaux temporels n’enfreignent aucune loi physique.

L’entropie – une mesure du désordre dans un système – reste constante dans le temps, satisfaisant marginalement la deuxième loi de la thermodynamique en ne décroissant pas.

Entre le développement de ce plan pour un cristal temporel et l’expérience informatique quantique qui lui a donné vie, les expériences de nombreux chercheurs différents ont atteint de nombreux jalons cristallins à peu près en même temps. Cependant, fournir tous les ingrédients de la recette de la « localisation à plusieurs corps » (le phénomène qui permet une cristallisation en temps fixe à l’infini) restait un défi majeur.

Pour Khemani et ses collaborateurs, la dernière étape vers le succès de Crystal consistait à travailler avec une équipe de Google Quantum AI. Ensemble, ce groupe a utilisé le matériel informatique quantique Sycamore de Google pour programmer 20 « spins » en utilisant la version quantique des éléments d’information d’un ordinateur classique, appelés qubits.

Révélant à quel point l’intérêt pour les cristaux temporels est intense, les cristaux ont de nouveau été publiés dans Science ce mois-ci. Des chercheurs de l’Université de technologie de Delft aux Pays-Bas ont créé le cristal en utilisant les qubits contenus dans le diamant.

READ  Facteur environnemental octobre 2022 : Faire l'histoire : un stagiaire du NIEHS nommé astronaute 2022

« Nous avons pu utiliser la polyvalence d’un ordinateur quantique pour nous aider à analyser ses propres limites », a déclaré Moessner, co-auteur de l’article et directeur de l’Institut Max Planck pour la physique des systèmes complexes. « Il nous a essentiellement expliqué comment corriger ses propres erreurs, afin que l’empreinte du comportement parfait d’un cristal temporel puisse être vérifiée grâce à des observations dans un temps limité. »

La signature principale d’un cristal temporel idéal est qu’il présente des vibrations non spécifiques de tous les états. La vérification de ce pouvoir dans la sélection des états a été un défi empirique majeur. Les chercheurs ont conçu un protocole pour examiner plus d’un million d’instances de cristaux temporels en un seul cycle de la machine, ne nécessitant que quelques millisecondes d’exécution. C’est comme regarder un cristal physique sous plusieurs angles pour vérifier sa structure répétitive.

« La caractéristique unique de notre processeur quantique est sa capacité à créer des états quantiques très complexes », a déclaré Xiao Mei, chercheur à navigateur google et co-auteur principal de l’article. « Ces états permettent d’étudier efficacement les structures de phase du matériau sans avoir à étudier l’ensemble de l’espace de calcul, une tâche autrement inextricable. »

Créer une nouvelle phase de la matière est sans aucun doute passionnant à un niveau fondamental. De plus, le fait que ces chercheurs aient pu le faire indique l’utilisation croissante de Ordinateurs quantiques Pour des applications autres que l’informatique.

« Je suis optimiste qu’avec des qubits plus nombreux et meilleurs, notre approche pourrait devenir une méthode majeure dans l’étude de la dynamique des déséquilibres », Pedram Roshan, chercheur chez Google et auteur principal de l’article.

READ  Les scientifiques avertissent que les virus peuvent être trouvés "ailleurs dans l'univers" en tant que maladies infectieuses

« Nous pensons que l’utilisation la plus excitante des ordinateurs quantiques en ce moment est celle de plates-formes pour la physique quantique fondamentale », dit Ippoliti. « Avec les capacités uniques de ces systèmes, il y a de l’espoir que vous découvrirez de nouveaux phénomènes auxquels vous ne vous attendiez pas. »

référence du magazine

  1. Mei, X, Ippolite, M, Quintana, C et al. Arrangement de cristallisation à l’état propre sur un processeur quantique. Nature 2021. EST CE QUE JE: 10.1038 / s41586-021-04257-w

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Les plus grandes empreintes de Deinonychusaurus au monde ont été découvertes dans l’est de la Chine

Published

on

Les plus grandes empreintes de Deinonychusaurus au monde ont été découvertes dans l’est de la Chine

La découverte des plus grandes empreintes de dinosaures tyrannosaures connues au monde sur le site de Longxiang à Longyan, dans la province du Fujian (est de la Chine), a conduit à la création d’une nouvelle espèce raciale appelée Fujianipus yingliangi. (Photo/Service de presse chinois)

Lundi matin, une équipe de scientifiques de l’Université chinoise des géosciences de Pékin et du Musée d’histoire naturelle paléolithique de Yingliang a annoncé la découverte des plus grandes empreintes de déinonychosaures connues au monde sur le site de Longxiang à Longyan, dans la province du Fujian (est de la Chine), établissant ainsi une nouvelle espèce. de dinosaure. Son nom est Foganibus Yinglianji.

Les déinonychosaures étaient un groupe de dinosaures théropodes carnivores ou omnivores qui vivaient de la fin du Jurassique au Crétacé. Les membres célèbres de ce groupe incluent Velociraptor et Deinonychus, qui sont apparus dans les films Jurassic Park.

L’article connexe, intitulé « Les pistes de Deinonychosaurus dans le sud-est de la Chine enregistrent un possible troodontidé géant », a été publié dans la revue universitaire iScience, une sous-revue de Cell, en avril.

En 2020, une équipe de scientifiques a découvert un total de 248 ensembles d’empreintes de dinosaures bien préservées dans les vasières du comté de Longyan. Parmi elles, il y avait 12 empreintes de dinosaures à deux doigts, qui peuvent être clairement divisées en deux types. Basé sur la taille et la morphologie.

Les traces plus petites, d’environ 11 cm de long, ont été identifiées comme des Velociraptorichnus, des empreintes appartenant à une créature qui pourrait ressembler à un Velociraptor. Les traces les plus grandes, d’environ 36 centimètres de long, sont celles de l’ichnotaxon fondateur Fujianipus yingliangi. Sur la base de la taille des traces, on estime que Fujianibus mesurait au moins 5 mètres de long et une hauteur de hanches supérieure à 1,8 mètre, ce qui en fait l’un des plus grands oiseaux de proie connus.

READ  Comment les matériaux bidimensionnels se dilatent-ils lorsqu'ils sont chauffés ?

Alors que de nombreux dinosaures déinonychosauridés étaient petits, l’évolution des grands dinosaures n’était pas rare et s’est produite indépendamment à plusieurs reprises. « Les empreintes du Fujianibus représentent un autre exemple de gigantisme indépendant chez les dinosaures en dehors des Amériques », a déclaré Niu Kitching, conservateur exécutif du musée.

Les dinosaures étaient décorés de plumes. Ils avaient quatre griffes à chaque pied. La première griffe de chaque pied était petite et placée à l’écart du pied principal. Le deuxième orteil du pied arrière portait de grandes griffes en forme de faucille, qui étaient généralement levées vers le haut pendant le mouvement, laissant derrière elles des empreintes à deux doigts laissées sur le sol par les troisième et quatrième orteils.

Selon Xing Lida, l’un des auteurs de la recherche, ils ont trouvé un total de six empreintes de deux doigts, cinq empreintes formant une trace. La longueur moyenne des empreintes est d’environ 36,4 cm et sa largeur est de 16,9 cm.

Ces empreintes, les plus grandes empreintes de dinosaures jamais trouvées en Chine et même dans le monde, appartenaient très probablement à un grand dinosaure théropode, peut-être un type de grand droméosaurien, a déclaré Xing.

Pour leurs recherches, l’équipe de recherche a créé une nouvelle classification des empreintes digitales. Pour rendre hommage aux contributions exceptionnelles du Musée d’histoire naturelle de la pierre de Yingliang à la recherche sur les dinosaures dans le Fujian, ils ont nommé ce type d’empreinte Fujianibus yingliangi.

Niu a souligné que la désignation officielle de la collection d’empreintes de dinosaures de Longxiang dans le Fujian lui confère une véritable « identité scientifique » en tant que collection d’empreintes de dinosaures du Crétacé supérieur la mieux préservée, la plus grande et la plus diversifiée découverte en Chine à ce jour.

READ  Experts : les tempêtes solaires ne sont pas prêtes à « plonger la Terre dans des jours consécutifs d’obscurité » en 2024

Cette découverte démontre également l’énorme potentiel de recherche du groupe d’empreintes de dinosaures de Longxiang dans le Fujian et revêt une grande importance pour l’étude de la faune des dinosaures du Crétacé supérieur en Chine, a ajouté Niu.


Continue Reading

science

Torsion et liaison des ondes de matière aux photons

Published

on

Torsion et liaison des ondes de matière aux photons

Les atomes à l’intérieur de la cavité optique échangent leurs états de quantité de mouvement en « jouant au catch » avec les photons. Lorsque les atomes absorbent les photons du laser appliqué, c’est l’ensemble du nuage d’atomes qui rebondit plutôt que les atomes individuels. Crédit : Stephen Burrows/Ray, Thompson and Holland Collections, édité

Des chercheurs du JILA et du NIST ont développé une technique permettant d’atténuer le rebond atomique dans les mesures quantiques en utilisant les interactions d’échange de quantité de mouvement au sein du système de cavités. Cette percée peut grandement améliorer Précision Les capteurs quantiques permettent de nouvelles découvertes en physique quantique.

En raison du rebond atomique, mesurer avec précision les états énergétiques des atomes individuels constitue un défi historique pour les physiciens. quand atome interagit avec un PhotonL’atome « ​​rebondit » dans la direction opposée, ce qui rend difficile la mesure précise de la position et de l’impulsion de l’atome. Ce rebond pourrait avoir de grandes implications pour la détection quantique, qui détecte des changements infimes dans les paramètres, par exemple en utilisant les changements dans les ondes gravitationnelles pour déterminer la forme de la Terre ou même détecter la matière noire.

Ana Maria Rey et James Thompson, boursiers JILA et NIST, Murray Holland, boursier JILA, et leur équipe ont proposé un moyen de surmonter ce rebond atomique en démontrant un nouveau type d’interaction atomique appelée interaction d’échange d’impulsion, dans laquelle les atomes échangent leur impulsion en échangeant photons correspondants. Les détails de la recherche ont été publiés dans un nouvel article de la revue les sciences.

À l’aide d’une cavité – un espace clos constitué de miroirs – les chercheurs ont observé que le recul atomique était supprimé par les atomes échangeant des états énergétiques dans cet espace étroit. Ce processus a créé une absorption collective d’énergie et réparti le recul entre toutes les particules.

Les atomes à l’intérieur de la cavité optique sont des états d’échange

Les atomes à l’intérieur de la cavité optique échangent leurs états de quantité de mouvement en « jouant au catch » avec les photons. Lorsque les atomes absorbent les photons du laser appliqué, c’est l’ensemble du nuage d’atomes qui rebondit plutôt que les atomes individuels. Crédit : Stephen Burrows/Collections Holland, Ray et Thompson

En utilisant ces résultats, d’autres chercheurs peuvent concevoir des cavités pour atténuer les rebonds et autres influences externes dans un large éventail d’expériences, ce qui pourrait aider les physiciens à mieux comprendre les systèmes complexes ou à découvrir de nouveaux aspects de la physique quantique. La conception améliorée de la cavité pourrait également permettre des simulations plus précises de la supraconductivité, comme dans le cas de la jonction Bose-Einstein-Condensate-Bardeen-Cooper-Schrift (BEC-BCS) ou des systèmes physiques à haute énergie.

READ  Après l'image du trou noir, les astronomes vont tester la théorie d'Einstein

Pour la première fois, il a été observé qu’une interaction d’échange de quantité de mouvement induisait une dynamique de torsion sur un axe (OAT), un aspect de l’intrication quantique, entre les états de la quantité de mouvement atomique. La farine d’avoine agit comme une tresse quantique pour enchevêtrer différentes particules, chaque état quantique étant tordu et lié à une autre particule.

Auparavant, l’OAT n’était observée que dans les états internes des atomes, mais désormais, avec ces nouveaux résultats, on pense que l’OAT induite par l’échange de quantité de mouvement peut aider à réduire le bruit quantique provenant de plusieurs atomes. La capacité à intriguer les états de quantité de mouvement pourrait également conduire à des améliorations de certaines mesures physiques réalisées par des capteurs quantiques, par exemple Ondes gravitationnelles.

Profitez du réseau de densité

Dans le cadre de cette nouvelle étude, inspirée des recherches antérieures de Thompson et de son équipe, les chercheurs ont examiné les effets de la superposition quantique, qui permet à des particules telles que des photons ou des électrons d’exister simultanément dans plusieurs états quantiques.

« Dans ce [new] Project, tous les atomes partagent le même signe de spin ; « La seule différence est que chaque atome est dans une superposition de deux états d’impulsion », a expliqué Chenjie Luo, étudiant diplômé et premier auteur.

Les chercheurs ont découvert qu’ils pouvaient mieux contrôler le rebond atomique en forçant les atomes à échanger des photons et leurs énergies associées. Comme dans un jeu de balle au prisonnier, un seul atome peut « lancer » une « balle au prisonnier » (un photon) et celle-ci rebondit dans la direction opposée. Cette balle douteuse pourrait être attrapée par un deuxième atome, ce qui provoquerait le même rebond à ce deuxième atome. Cela annule les rebonds subis par les deux atomes et les fait en moyenne pour l’ensemble du système de cavités.

READ  Facteur environnemental octobre 2022 : Faire l'histoire : un stagiaire du NIEHS nommé astronaute 2022

Lorsque deux atomes échangent des énergies photoniques différentes, le paquet d’ondes résultant (la distribution des ondes de l’atome) forme en superposition un graphique d’impulsion connu sous le nom de réseau de densité, qui ressemble à un peigne fin.

Ajouta Lou. « La formation d’un réseau de densité indique deux états d’impulsion [within the atom] Ils sont tellement « cohésifs » les uns avec les autres qu’ils peuvent intervenir [with each other]Les chercheurs ont découvert que l’échange de photons entre les atomes provoquait la connexion des paquets d’ondes des deux atomes, de sorte qu’il ne s’agissait plus de mesures distinctes.

Les chercheurs peuvent stimuler l’échange de quantité de mouvement en explorant l’interaction entre le réseau de densité et la cavité optique. Étant donné que les atomes échangent de l’énergie, tout rebond provoqué par l’absorption des photons était dispersé parmi l’ensemble de la communauté des atomes plutôt que parmi les particules individuelles.

Suppression du décalage Doppler

En utilisant cette nouvelle méthode de contrôle, les chercheurs ont découvert qu’ils pouvaient également utiliser ce système d’atténuation de la rétrodiffusion pour aider à atténuer un problème de mesure distinct : le décalage Doppler.

Le décalage Doppler, un phénomène de la physique classique, explique pourquoi une sirène ou un klaxon de train change de tonalité lorsqu’il passe devant l’auditeur ou pourquoi certaines étoiles apparaissent rouges ou bleues sur les photographies du ciel nocturne. Il s’agit du changement de fréquence de l’onde lorsqu’elle passe par l’auditeur. La source et l’observateur se rapprochent (ou s’éloignent) l’un de l’autre. En physique quantique, le décalage Doppler décrit le changement d’énergie d’une particule dû au mouvement relatif.

READ  Une intense pluie de météores devrait être visible dans le ciel irlandais ce soir

Pour des chercheurs comme Lu, le décalage Doppler peut être un défi à surmonter pour obtenir une mesure précise. « Lorsque les photons sont absorbés, le rebond atomique entraînera un décalage Doppler de la fréquence des photons, ce qui constitue un gros problème lorsque l’on parle de spectroscopie précise », a-t-il expliqué. En simulant leur nouvelle méthode, les chercheurs ont découvert qu’ils pouvaient surmonter les biais de mesure dus au décalage Doppler.

Enchevêtrement des échanges d’élan

Les chercheurs ont également découvert que l’échange de quantité de mouvement entre ces atomes peut être utilisé comme une forme d’intrication quantique. Comme l’explique John Wilson, un étudiant diplômé du groupe de Holland : « Lorsqu’un atome tombe, son mouvement vibre à la fréquence de la cavité, ce qui encourage les autres atomes à ressentir collectivement le mécanisme de rétroaction et les incite à corréler son mouvement à travers des oscillations partagées. »

Pour tester davantage cet « enchevêtrement », les chercheurs ont créé une plus grande séparation entre les états de quantité de mouvement des atomes, puis ont catalysé l’échange de quantité de mouvement. Les chercheurs ont découvert que les atomes continuaient à se comporter comme s’ils étaient connectés. « Cela suggère que les deux états d’impulsion oscillent l’un par rapport à l’autre comme s’ils étaient reliés par un ressort », a ajouté Luo.

En ce qui concerne l’avenir, les chercheurs prévoient d’explorer davantage cette nouvelle forme d’intrication quantique, dans l’espoir de mieux comprendre comment elle peut être utilisée pour améliorer différents types de dispositifs quantiques.

Référence : « Les interactions d’échange d’impulsion dans l’interféromètre atomique de Bragg empêchent le décalage Doppler » par Chengyi Lu, Haoqing Zhang, Vanessa B. W. Koh et John D. Wilson, Angjun Chu, Murray J. Holland, Anna Maria Rhee et James K. Thompson, le 2 mai 2024, les sciences.
est ce que je: 10.1126/science.adi1393

Cette recherche a été soutenue par le Département américain de l’énergie, l’Office of Science, les Centres nationaux de recherche en sciences de l’information quantique et le Quantum Systems Accelerator.

Continue Reading

science

Astéroïde géocroiseur 2024 JD Rencontre très rapprochée : Image – 5 mai 2024.

Published

on

Astéroïde géocroiseur 2024 JD Rencontre très rapprochée : Image – 5 mai 2024.

Le 8 mai 2024, l’astéroïde géocroiseur 2024 dinars Nous aurons une rencontre très rapprochée mais sûre avec la Terre. Elle approchera une distance de 278 000 km, soit environ 72 % de la distance lunaire moyenne. Nous l’avons remarqué à mesure qu’il s’approchait de nous.

Astéroïde géocroiseur 2024. JD : 5 mai 2024.

L’image ci-dessus provient d’une seule exposition de 120 secondes, prise à distance à l’aide du viseur. Celestron C14 + Paramount ME + SBIG ST8-XME Une unité robotique est disponible dans le cadre du projet Virtual Telescope. Le télescope suit le mouvement apparent de l’astéroïde et il apparaît comme un point lumineux pointu, indiqué par une flèche blanche, tandis que les étoiles laissent des lignes lumineuses en arrière-plan.

Au moment du tournage, l’astéroïde 2024 dinars Il se trouvait à environ 750 000 kilomètres de nous et se rapprochait lentement de la Terre. Cet astéroïde a été découvert par le Panstarrs Survey Le 1er mai 2024.

Ce gros astéroïde, mesurant entre 8,2 et 18 mètres de long, atteindra sa distance minimale (environ 278 000 km, soit 72 % de la distance lunaire moyenne) de nous le 8 mai 2024, à 13h34 UTC (Source : NASA/JPL). Bien entendu, il n’y a aucun risque pour notre planète.

Retournez à la page « Système solaire ».

Soutenez le projet de télescope virtuel !

Soutenez-nous ! Veuillez faire un don et recevoir une collection unique et limitée d’images à L’étonnante comète 12P/Pons-Brooks avec la galaxie d’Andromède, à Astéroïdes et stations spatiales potentiellement dangereuses Et beaucoup plus, Conçu spécialement pour les supporters comme vous !

(Vous pourrez ajuster le montant plus tard)

READ  Les scientifiques avertissent que les virus peuvent être trouvés "ailleurs dans l'univers" en tant que maladies infectieuses

Continue Reading

Trending

Copyright © 2023