Connect with us

science

Aidez un scientifique de la DCU à trouver les origines du vent solaire responsable de l’apparition des aurores boréales.

Published

on

Aidez un scientifique de la DCU à trouver les origines du vent solaire responsable de l’apparition des aurores boréales.

Plus tôt ce mois-ci, des milliers de personnes à travers le pays ont été témoins des aurores boréales, aggravées par une rare tempête solaire survenue au même moment.

Les éruptions solaires ont provoqué cinq explosions de plasma, capables de désactiver les réseaux électriques sur Terre ainsi que les satellites en orbite.

Aujourd’hui, les origines des mystérieux vents solaires qui produisent les conditions météorologiques à l’origine des aurores boréales et méridionales ont été découvertes.

Le Dr David Long, de l’École des sciences physiques de la DCU, a déclaré : « Il existe deux types de vent solaire : rapide et lent. Les origines du type rapide étaient connues, mais nous avons découvert celles du type lent.

La recherche a duré deux ans à une équipe de 21 personnes, dont le Dr Long.

« Il a fallu beaucoup de temps pour obtenir les observations du vaisseau spatial, d’abord rassembler tous les petits éléments, puis faire l’analyse et comprendre ce que nous voyions. C’était un très gros projet avec beaucoup de personnes impliquées », a-t-il déclaré.

La recherche comprenait l’utilisation de la collecte de données provenant d’instruments avancés à bord du vaisseau spatial Solar Orbiter, exploité par l’Agence spatiale européenne et la NASA, ainsi qu’une orbite qui l’a rapproché beaucoup plus du soleil que n’importe quelle mission précédente.

Dr David Long de DCU

Cette approche signifie que l’équipe a de meilleures chances de découvrir d’où vient le vent solaire.

« Les vents rapides proviennent de trous coronaux, qui sont des zones très sombres au soleil », a déclaré le Dr Long.

Cependant, les recherches se sont concentrées sur les vents plus lents.

READ  Des scientifiques ont découvert que les « mathématiques pures » sont écrites dans Evolutionary Genetics : ScienceAlert

« Nous pensons que cela vient de régions actives proches où il y a un champ magnétique du soleil émanant de la surface. C’est très complexe et il se passe beaucoup de choses », a ajouté le Dr Long.

Ces vents frappent toujours le sol, il est donc important d’en savoir plus à leur sujet, a-t-il déclaré.

« Il circule toujours du soleil vers la Terre, et savoir d’où il vient, savoir quel type de vent solaire et dans quels courants de vent nous sommes, est vraiment important pour la météo spatiale, pour prédire la météo spatiale, pour comprendre comment les choses se produisent. du soleil qui peut nous affecter ici sur Terre », a-t-il déclaré.

C’est là qu’interviennent les aurores boréales et australes.

« Cette matière s’échappe du soleil vers le système solaire, et la Terre est entourée d’un champ magnétique protecteur. Ainsi, la plupart du temps, la Terre est protégée de toute cette matière », a déclaré le Dr Long.

Cependant, si ce matériau traverse cette couche et qu’il y a une forte tempête solaire comme il y a quelques semaines, l’aurore est plus visible loin des pôles.

« Plus il y a de matière, plus elle devient forte et plus elle se rapproche de l’équateur. Dans notre cas, il y a quelques semaines, c’était au-dessus de l’Irlande », a déclaré le Dr Long.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Au secours! Comment activer les procédures d’intervention d’urgence de la cellule

Published

on

Au secours!  Comment activer les procédures d’intervention d’urgence de la cellule

Au secours! Des signaux de détresse comme ceux-ci sont utilisés partout dans le monde pour indiquer une urgence.

Les cellules qui composent votre corps ont également leurs propres versions de signaux d’urgence. Ces signaux sont activés si la cellule est infectée par un virus ou une bactérie, ou en cas de carence en éléments constitutifs importants tels que les acides aminés, par exemple. Une nouvelle étude de Caltech identifie comment ces « voies de stress » cellulaires activent des mécanismes de contrôle de la qualité qui nettoient les dommages pendant une crise.

La recherche a été menée dans un laboratoire David Chanprofesseur Harold et Violet Alvarez de biologie et doyen des études supérieures, est décrit dans un article de recherche paru dans la revue Cellule moléculaire.

Il existe quatre voies de stress distinctes qui amènent une cellule à cesser de remplir ses fonctions normales. Chaque voie de stress possède sa propre protéine appelée kinase, qui est activée comme un agent de sécurité qui se met au garde-à-vous après avoir entendu une alarme. Une fois activée, la kinase modifie une protéine appelée EIF2 en y ajoutant un composé phosphorylé, qui inactive EIF2. EIF2 est le principal initiateur de la cellule dans ses fonctions normales de production de protéines, de sorte que sa « phosphorylation » provoque l’arrêt de la plupart de la production de protéines dans la cellule.

« Si un incendie se déclare, vous voulez arrêter tout ce que vous faites et faire attention à l’incendie », explique le chercheur postdoctoral Yogaditya Chakraborty, premier auteur de l’étude. « La désactivation d’EIF2 par phosphorylation arrête efficacement les fonctions de la cellule afin que vous puissiez. concentrez-vous sur l’urgence.

READ  Cratères nouvellement formés localisés sur Mars par un géologue de l'UMD et l'équipe NASA InSight

Pendant le stress, la cellule doit également activer des voies de « contrôle qualité » qui garantissent l’exactitude des composants cellulaires. Ces mécanismes de contrôle de qualité ressemblent davantage à des agents de sécurité qu’à des agents de nettoyage : ils sont capables de dégrader les protéines et les parties cellulaires cassées ou endommagées. On ne savait pas auparavant comment les voies de stress affectent et interagissent avec les voies de contrôle qualité.

La nouvelle étude montre que lors de situations stressantes, la protéine EIF2 phosphorylée s’accumule à la surface des mitochondries, activant la réponse de contrôle qualité de cet organite. De cette manière, la protéine EIF2 phosphorylée remplit simultanément deux rôles : celui d’agent de sécurité et celui de gardien.

Comprendre les détails de ces processus cellulaires est important pour étudier des maladies telles que la maladie d’Alzheimer et la maladie de Parkinson, car ces troubles et d’autres troubles neurologiques se caractérisent par une perte des mécanismes de contrôle de la qualité.

« Les mitochondries sont communément appelées « centrale électrique de la cellule », et nous apprenons que la cellule dispose de mécanismes complexes pour protéger les fonctions vitales de son générateur d’énergie », explique Chakraborty. Il travaille actuellement à étendre ces travaux pour explorer si les voies de stress interagissent également avec d’autres mécanismes de contrôle de la qualité.

Le titre de l’article est « La branche HRI de la réponse intégrale au stress stimule sélectivement la mitophagie mitochondriale. » En plus de Chakraborty et Chan, l’étude a été co-écrite par Cheng Yang, étudiant diplômé de Caltech, et par Hsiuzhen Chen, chercheur principal. Le financement a été fourni par les National Institutes of Health.

READ  Un robot de semences biodégradable imprimé en 3D peut changer de forme en réponse à l'humidité du sol

Continue Reading

science

Le télescope James Webb met en évidence la structure de la glace d’eau interstellaire

Published

on

Le télescope James Webb met en évidence la structure de la glace d’eau interstellaire

Cette image prise par la caméra proche infrarouge (NIRCam) du télescope spatial James Webb de la NASA montre la région centrale d’un nuage moléculaire sombre appelé Chamaeleon I, situé à 630 années-lumière. Le matériau nuageux frais et léger (bleu, centre) est éclairé en infrarouge par la lueur de la protoétoile Ced 110 IRS 4 (orange, en haut à gauche). La lumière de nombreuses étoiles d’arrière-plan, visibles sous forme de points orange derrière le nuage, peut être utilisée pour détecter la glace dans le nuage, qui absorbe la lumière des étoiles qui le traverse. Image plus grande

Grâce au télescope spatial James Webb, une équipe de chercheurs comprenant Paola Caselli, Barbara Michela Giuliano et Basil Housquinet de l’Institut Max Planck de physique des particules a pu sonder en profondeur le cœur de nuages ​​denses, révélant des détails de la glace interstellaire qui étaient auparavant inobservables. . L’étude se concentre sur la première région des caméléons, en utilisant la caméra NIRCam du télescope spatial James Webb pour mesurer les raies spectrales de centaines d’étoiles derrière le nuage.

Pour la première fois, de faibles caractéristiques spectrales appelées « hydroxyles pendants » ont été détectées, indiquant que les molécules d’eau ne sont pas entièrement liées à la glace. Ces caractéristiques permettent de suivre la porosité et la modification des grains de glace à mesure qu’ils évoluent des nuages ​​moléculaires aux disques protoplanétaires. Cette découverte améliore notre compréhension de la structure des grains de glace et de leur rôle dans la formation des planètes.

Grâce à la sensibilité sans précédent du télescope James Webb, nous sommes en mesure d’explorer la glace au plus profond des noyaux de nuages ​​denses, où l’extinction est si élevée que les observatoires précédents ne pouvaient pas la détecter. Ces lignes de visée constituent le chaînon manquant entre la formation initiale de glace à la surface des grains de poussière dans les nuages ​​moléculaires et l’agrégation de grains de glace en planètes glacées, un processus encore largement mal compris qui se produit dans le disque protoplanétaire entourant une nouvelle étoile. En approfondissant le lieu de naissance des étoiles, nous fournirons de nouvelles preuves de ces modifications apportées aux grains de glace.

Dans le programme Ice Age ciblant Chamaeleon I, une région nuageuse dense proche de nous dans la Voie Lactée, les observations de la partie la plus dense du nuage à l’aide de l’instrument NIRCam de JWST ont permis des mesures spectroscopiques simultanées des lignes de visée de centaines d’étoiles derrière le nuage.

La lumière de ces étoiles interagit avec les grains de glace lorsqu’elle traverse le nuage avant d’être capturée par le grand miroir du télescope James Webb et détectée. Jusqu’à présent, nous avons pu mesurer les principales caractéristiques d’absorption intensive associées aux principales espèces présentes dans la glace, à savoir l’eau, le dioxyde de carbone, le monoxyde de carbone, le méthanol et l’ammoniac. Grâce à la plus grande taille du miroir du télescope, nous pouvons désormais mesurer des caractéristiques beaucoup plus faibles.

Illustration de différents scénarios de liaisons hydroxyles observés dans le nuage sombre Cha I à l’aide du télescope spatial James Webb. Trois caractéristiques spectrales. © NASA, ESA, ASC, M. Zamani (ESA/Web); Sciences : M. K. McClure (Université de Leiden), F. Sun (Observatoire Steward) et Z. Smith (The Open University) et l’équipe ERS Ice Age.

Des études approfondies des emplacements et des caractéristiques des caractéristiques spectrales faibles révèlent certaines conditions physiques du corps. Ici, nous avons effectué la première détection d’un ensemble spécifique de bandes très faibles associées à seulement une petite fraction de molécules d’eau dans la glace.

Les caractéristiques spectroscopiques, que les astrophysiciens de laboratoire appellent « OH en suspension » et qu’elles mesurent dans la glace en laboratoire depuis des décennies, correspondent à des molécules d’eau qui ne sont pas entièrement liées à la glace et peuvent tracer des surfaces et des interfaces dans des grains de glace ou lorsqu’elles sont mélangées. L’eau est étroitement liée à d’autres espèces moléculaires présentes dans la glace.

Ces caractéristiques « OH pendantes » se situent dans une région spectrale inaccessible depuis la Terre, et bien qu’elles aient été activement recherchées depuis les années 1990, les observatoires spatiaux précédents couvrant cette gamme spectrale ne disposaient pas de la combinaison de résolution spectrale et de sensibilité requise pour les détecter, fournissant ainsi des limites supérieures. . Juste. Aujourd’hui, à l’ère du télescope spatial James Webb, nous pouvons utiliser ces signatures pour suivre la modification des grains de glace au cours de notre voyage vers la formation des planètes.

On s’attend depuis longtemps à ce que ces marqueurs, s’ils étaient découverts, soient utilisés pour suivre la porosité de la glace, c’est-à-dire que leur présence indiquerait des grains « pelucheux » de forte porosité tandis que leur absence indiquerait un compactage et une agrégation. Bien que cette explication simple soit encore débattue, la découverte réussie de ces signatures signifie désormais que nous pouvons les rechercher dans différents environnements et à différents moments du processus de formation des étoiles afin de déterminer si elles peuvent être utilisées comme indicateur de l’évolution de la glace sous conditions différentes.

« La découverte de la propriété de liaison des calottes glaciaires en suspension dans l’eau démontre l’importance de l’astrophysique en laboratoire pour l’interprétation des données JST », explique Barbara Michela Giuliano, l’une des auteurs. « Des informations détaillées sur les propriétés physiques de la glace observée nécessitent encore des recherches approfondies en laboratoire. soutien pour démêler les propriétés spectrales observées dans les régions.  » « Les objets denses du milieu interstellaire et des disques protoplanétaires et nous, ici au CAS, sommes heureux de fournir un tel soutien. »

« La haute sensibilité du télescope James Webb, combinée aux progrès étonnants de l’astrophysique en laboratoire, nous permet enfin d’étudier en détail la structure physique et la composition chimique de la glace interstellaire », explique Paula Caselli, qui a également contribué à cet article avec le doctorant Basil. Hoskenette. « Il est important de fournir les contraintes rigoureuses sur la modélisation chimique/dynamique nécessaire pour reconstruire notre histoire astrochimique, des nuages ​​interstellaires aux disques protoplanétaires en passant par les systèmes stellaires comme le nôtre. »

Cette étude montre que des grains de glace potentiellement « pelucheux » sont présents dans le nuage, affectant la chimie qui peut se produire dans ces régions et donc le degré de complexité chimique qui peut s’accumuler. Cette découverte ouvre également une nouvelle fenêtre pour étudier la formation planétaire, car ces caractéristiques spectrales nous permettent enfin de nous faire une idée de la répartition spatiale et de la diversité de la glace ainsi que de la façon dont elle évolue au cours de son voyage depuis les nuages ​​moléculaires jusqu’aux disques protoplanétaires et aux planètes. .

Détection des caractéristiques de glace insaisissables et pendantes des ions hydroxyle à ~ 2,7 µm dans Chamaeleon I à l’aide de JWST NIRCam.nature

Astrobiologie, Astrochimie,

READ  LAKE COUNTY NEWS, CA - Space News: Le télescope spatial James Webb et l'équipe Keck vont étudier la lune Titan de Saturne
Continue Reading

science

Un stagiaire de recherche de l’US Navy découvre une étoile à neutrons « extrême » à rotation rapide

Published

on

Un stagiaire de recherche de l’US Navy découvre une étoile à neutrons « extrême » à rotation rapide

Amaris McCarver, stagiaire en télédétection au Laboratoire de recherche navale (NRL) des États-Unis, et une équipe d’astronomes ont découvert une étoile à neutrons en rotation rapide qui projette des faisceaux de rayonnement à travers l’univers comme une balise cosmique.

L’étoile à neutrons à rotation rapide, ou « pulsar », se trouve au sein de l’amas d’étoiles dense Glimpse-CO1, situé dans le plan galactique de la Voie Lactée, à environ 10,7 années-lumière de la Terre. Ce pulsar, qui tourne des centaines de fois par seconde, est le premier du genre découvert dans l’amas d’étoiles Glimpse-CO1. Le Very Large Telescope Array (VLA) a repéré le pulsar, appelé GLIMPSE-C01A, le 27 février 2021, mais il est resté enfoui dans une énorme quantité de données jusqu’à ce que McCarver et ses collègues le trouvent à l’été 2023.

Continue Reading

Trending

Copyright © 2023