Connect with us

science

Bulles de gaz dans les pores des roches – une pépinière pour la vie sur la Terre primitive – ScienceDaily

Published

on

Des chercheurs basés à Munich et à Dresde ont conçu un scénario convaincant pour l’évolution des microgouttelettes sans membrane comme origine de la vie.

Où et comment la vie a-t-elle commencé sur la Terre primitive il y a plus de 3,5 milliards d’années à partir de produits chimiques non vivants ? Trouver la réponse à cette question a longtemps été débattue et difficile pour les scientifiques. La seule chose que les scientifiques peuvent rechercher, ce sont des environnements potentiels qui ont permis à la vie de se déclencher. Une nécessité fondamentale des premières cellules sur Terre était la capacité de former des compartiments et d’évoluer pour faciliter les premières réactions chimiques. Les microgouttelettes non associées à la membrane sont d’excellents candidats pour le marquage des protocellules, avec la capacité de diviser et de concentrer les molécules et de soutenir les réactions biochimiques. Les scientifiques n’ont pas encore montré comment ces minuscules gouttelettes auraient pu évoluer pour donner naissance à la vie sur Terre. Des chercheurs du LMU Center for Nanosciences (CeNS) et du Max Planck Institute for Molecular Cell Biology and Genetics (MPI-CBG) à Dresde ont maintenant démontré, pour la première fois, que la croissance et la division de micro-gouttelettes sans membrane est possible dans un environnement similaire aux bulles de gaz dans les pores de la roche chaude sur Terre. Il est suggéré que la vie peut avoir son origine là-bas.

L’équipe de Dora Tang, chef du groupe de recherche du MPI-CBG, a montré en 2018 que l’ARN simple est actif dans de minuscules gouttelettes sans membrane, permettant un environnement chimique adapté au début de la vie. Ces expériences ont été menées dans un environnement aquatique simple, où les forces concurrentes étaient équilibrées. Cependant, les cellules ont besoin d’un environnement dans lequel elles peuvent constamment se diviser et se développer. Pour trouver un scénario plus approprié à l’origine des expériences de la vie, Dora Tang s’est associée à Dieter Braun, professeur de biophysique des systèmes au LMU. Son groupe a développé des conditions avec un environnement déséquilibré qui permettent de multiples interactions en un seul endroit et où les cellules peuvent se développer. Bien que ces cellules ne ressemblent pas aux cellules que nous connaissons aujourd’hui, elles sont très similaires aux protocellules des cellules d’aujourd’hui, également appelées protocellules, constituées de matériaux adhésifs sans membrane.

READ  Survolez les vallées enflammées de Mars dans cette superbe vidéo prise depuis un vaisseau spatial européen

L’environnement créé par le laboratoire de Brown est un scénario possible sur la Terre primitive, dans lequel la roche poreuse dans l’eau à proximité des activités volcaniques était partiellement chauffée. Pour leurs expériences, Dora Tang et Dieter Braun ont utilisé des pores contenant de l’eau avec une bulle de gaz et un gradient thermique (électrode chaude et froide) afin de voir si les protocellules se diviseraient et se développeraient. Alan Inicelli, premier auteur de l’étude et doctorant au laboratoire de Dieter Braun, explique : « Nous savions que l’interface gaz-eau attire les molécules. Les protocellules s’y logent et s’accumulent, s’agrégeant en molécules plus grosses. C’est pourquoi nous avons choisi cette mettre en place. » Les chercheurs ont déjà remarqué que les molécules et les protocellules se dirigeaient vers l’interface gaz-eau pour former des protocellules plus grandes constituées de sucre, d’acides aminés et d’ARN. Allan poursuit : « Nous avons également observé que les cellules progénitrices étaient capables de se diviser et de se diviser. Ces résultats représentent un mécanisme potentiel pour la croissance et la division de protocellules sans membrane sur la Terre primitive. » En plus de la division et de l’évolution, les chercheurs ont découvert qu’en raison du gradient de température, plusieurs types de protocellules avec une composition chimique, une taille et des propriétés physiques différentes se sont formées. Par conséquent, le gradient de température dans cet environnement pourrait avoir exercé une pression de sélection évolutive sur les protocellules sans membrane.

Dora Tang et Dieter Braun, qui ont dirigé l’étude, ont résumé : « Ce travail montre pour la première fois qu’une bulle de gaz dans les pores de la roche chaude est un scénario convaincant pour l’évolution de petites gouttelettes sans membrane sur la Terre primitive. les études pourraient se concentrer sur davantage d’habitats potentiels et explorer d’autres conditions d’émergence de la vie.

READ  Les astronomes ont été déconcertés par la "plus grande" explosion cosmique de tous les temps

Source de l’histoire :

Matériaux Introduction de Ludwig Maximilians-Université de Munich. Remarque : le contenu peut être modifié en fonction du style et de la longueur.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Une source de cristaux liquides de paires de photons

Published

on

La conversion ascendante paramétrique spontanée (SPDC), en tant que source de photons intriqués, présente un grand intérêt pour la physique quantique et la technologie quantique, mais jusqu’à présent, elle ne peut être mise en œuvre que dans des matériaux solides. Des chercheurs de l’Institut Max Planck pour la science de la lumière (MPL) et de l’Institut Josef Stefan de Ljubljana, en Slovénie, ont démontré pour la première fois la SPDC dans un cristal liquide. Les résultats ont été récemment publiés dans natureouvrent la voie à une nouvelle génération de sources quantiques : efficaces et accordables par champs électriques.

Diviser un photon en deux est l’un des outils les plus utiles en photonique quantique. Il peut créer des paires de photons intriqués, des photons uniques, de la lumière compressée et des états photoniques encore plus complexes, essentiels aux technologies photoniques quantiques. Ce processus est connu sous le nom de conversion abaisseur automatique (SPDC).

Le SPDC est étroitement lié à la symétrie centrale. Il s’agit de la symétrie par rapport à un point – par exemple, un carré est symétrique au centre mais pas un triangle. Essentiellement, en divisant un photon en deux, le SPDC brise la symétrie centrale. Par conséquent, cela n’est possible que dans les cristaux dont la cellule primaire est asymétrique au centre. La SPDC ne peut pas se produire dans les liquides ou les gaz ordinaires, car ces matériaux sont isotropes.

Cependant, des chercheurs ont récemment découvert des cristaux liquides de structure différente, appelés cristaux liquides nématiques ferroélectriques. Bien qu’ils soient fluides, ces matériaux se caractérisent par une forte rupture de symétrie centrale. Leurs molécules sont allongées, asymétriques et surtout, elles peuvent être réorientées par un champ électrique externe. La réorientation des molécules modifie la polarisation des paires de photons générées, ainsi que le taux de génération. Avec un conditionnement approprié, un échantillon de ces matériaux peut constituer un dispositif extrêmement utile car ils produisent efficacement des paires de photons, peuvent être facilement réglés à l’aide d’un champ électrique et peuvent être intégrés dans des dispositifs plus complexes.

READ  La formation par simulation basée sur l'IA améliore les performances humaines dans les exosquelettes robotiques

À l’aide d’échantillons préparés à l’Institut Josef Stefan (Ljubljana, Slovénie) à partir de cristaux liquides nématiques ferroélectriques fabriqués par Merck Electronics KGaA, des chercheurs de l’Institut Max Planck pour la science de la lumière ont appliqué pour la première fois la SPDC à un cristal liquide. . L’efficacité de génération de photons intriqués est aussi élevée que celle des meilleurs cristaux non linéaires, tels que le niobate de lithium, d’épaisseur similaire. En appliquant un champ électrique de quelques volts seulement, ils ont pu activer et désactiver la génération de paires de photons, ainsi que modifier les propriétés de polarisation de ces paires. Cette découverte marque le début d’une nouvelle génération de sources lumineuses quantiques : flexibles, accordables et efficaces.

Continue Reading

science

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Published

on

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Illustration de la conception expérimentale générale du CREME exoMIP (Tsigaridis et al. en préparation), comme exemple de la façon dont l’exoMIP peut être structuré pour permettre une large participation communautaire. — Ph.EP astronomique

Alors que le télescope spatial James Webb commence à renvoyer des observations, il est plus important que jamais que les modèles climatiques exoplanétaires soient capables de prédire de manière cohérente et correcte l’observabilité des exoplanètes, de récupérer leurs données et d’interpréter les environnements planétaires à partir de ces données.

Les comparaisons entre modèles jouent un rôle crucial dans ce contexte, surtout à l’heure où peu de données sont disponibles pour valider les prédictions des modèles. Le groupe de travail CUISINES du Nexus for Exoplanet System Science (NExSS) de la NASA soutient une approche systématique pour évaluer les performances des modèles d’exoplanètes et fournit ici un cadre pour mener des projets d’intercomparaison de modèles d’exoplanètes organisés par la communauté (exoMIP).

Le cadre CUISINES adapte spécifiquement les pratiques de la communauté climatique terrestre pour répondre aux besoins des chercheurs exoplanétaires, y compris une gamme de types de modèles, de cibles planétaires et d’études spatiales paramétriques. Son objectif est d’aider les chercheurs à travailler collectivement, équitablement et ouvertement pour atteindre des objectifs communs.

Le cadre CUISINES repose sur cinq principes : 1) Définir à l’avance la ou les questions de recherche que exoMIP vise à aborder. 2) Créer une conception pilote qui maximise la participation de la communauté et en faire la publicité largement. 3) Planifiez un calendrier de projet qui permet à tous les membres d’exoMIP de participer pleinement. 4) Créer des produits de données à partir des résultats du modèle pour une comparaison directe avec les observations. 5) Créez un plan de gestion des données applicable aujourd’hui et évolutif à l’avenir.

READ  Un petit pas pour un homme, un pas de géant trop loin pour Peregrine Mission One - The Irish Times

Au cours des premières années de son existence, CUISINES fournit déjà un soutien logistique à 10 exoMIP et continuera à organiser des ateliers annuels pour approfondir les commentaires de la communauté et présenter de nouvelles idées d’exoMIP.

Linda E. Sohl, Thomas J. Fuchez, Sean Domagal-Goldman, Duncan A. Christie, Russell Detrick, Jacob Haque-Misra, C.E. Harman, Nicholas Iero, Nathan J. Mayne, Costas Tsigarides, Geronimo L. Villanueva, Ambre V. Jeune, Guillaume Chaverot

Commentaires : 14 pages, deux numéros
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP) ; Instruments et méthodes astrophysiques (astro-ph.IM)
Citer comme : arXiv:2406.09275 [astro-ph.EP] (ou arXiv :2406.09275v1 [astro-ph.EP] pour cette version)
Date de soumission
Qui : Linda Suhl
[v1] Jeudi 13 juin 2024, 16:14:22 UTC (903 Ko)
https://arxiv.org/abs/2406.09275
Astrobiologie

Continue Reading

science

Ingénieur – Des « mégaclusters » de satellites pourraient mettre en péril la reconstitution du trou d’ozone

Published

on

Ingénieur – Des « mégaclusters » de satellites pourraient mettre en péril la reconstitution du trou d’ozone

Le Protocole de Montréal de 1987 a réglementé avec succès les CFC nocifs pour la couche d’ozone afin de protéger la couche d’ozone, réduisant ainsi le trou d’ozone au-dessus de l’Antarctique, et une reprise est attendue dans les 50 prochaines années.

Cependant, de nouvelles recherches de Université de Californie du Sud Ecole d’Ingénieurs de Viterbi Il a montré que ces oxydes ont été multipliés par huit entre 2016 et 2022 et continueront de s’accumuler à mesure que le nombre de satellites en orbite terrestre basse (LEO) augmentera, mettant ainsi la couche d’ozone en danger dans les décennies à venir.

Les chercheurs ont expliqué que sur 8 100 objets en orbite terrestre basse, 6 000 sont des satellites Starlink lancés au cours des dernières années et que la demande d’une couverture Internet mondiale entraîne une augmentation rapide du lancement d’essaims de petits satellites de communication.

SpaceX est le leader de ce projet, avec l’autorisation de lancer 12 000 satellites Starlink supplémentaires et jusqu’à 42 000 satellites prévus. Amazon et d’autres sociétés dans le monde envisagent également de créer des constellations allant de 3 000 à 13 000 satellites, ajoutent les auteurs de l’étude.

Les satellites Internet ont une durée de vie d’environ cinq ans seulement, les entreprises doivent donc lancer des satellites de remplacement pour maintenir le service Internet, ce qui poursuit un cycle d’obsolescence programmée et de contamination imprévue, ont indiqué les chercheurs.

Les oxydes d’aluminium déclenchent des réactions chimiques qui détruisent l’ozone stratosphérique, qui protège la Terre des rayons ultraviolets. Les oxydes ne réagissent pas chimiquement avec les molécules d’ozone, mais conduisent plutôt à des réactions destructrices entre l’ozone et le chlore, conduisant à l’appauvrissement de la couche d’ozone.

READ  Webb a capturé un anneau d'Einstein presque parfait à 12 milliards d'années-lumière : ScienceAlert

Étant donné que les oxydes d’aluminium ne sont pas consommés dans ces réactions chimiques, ils peuvent continuer à détruire molécule après molécule d’ozone pendant des décennies à mesure qu’ils dérivent dans la stratosphère, ont indiqué les chercheurs.

« Ce n’est que ces dernières années que les gens ont commencé à penser que cela pourrait devenir un problème », a déclaré Joseph Wang, chercheur en astronautique à l’Université de Californie du Sud et auteur correspondant de l’étude, dans un communiqué. « Nous avons été l’une des premières équipes à considérer les implications de ces faits. »

Puisqu’il est impossible de collecter des données sur des engins spatiaux en feu, des études antérieures ont utilisé des analyses de micrométéorites pour estimer la contamination potentielle. Cependant, les chercheurs ont indiqué que les micrométéorites contiennent très peu d’aluminium, un métal qui représente 15 à 40 % de la masse de la plupart des satellites. Ces estimations ne s’appliquent donc pas bien aux nouveaux satellites.

Au lieu de cela, les chercheurs ont modélisé la composition chimique et les liaisons au sein des matériaux satellites lors de leurs interactions aux niveaux moléculaire et atomique. Les résultats ont permis aux chercheurs de comprendre comment la matière change avec différents apports d’énergie.

L’étude a été financée par NASAIl a été constaté qu’en 2022, la rentrée des satellites a augmenté la quantité d’aluminium dans l’atmosphère de 29,5 % au-dessus des niveaux normaux.

La modélisation a montré qu’un satellite typique de 250 kg avec 30 pour cent de sa masse d’aluminium générerait environ 30 kg de nanoparticules d’oxyde d’aluminium (taille de 1 à 100 nanomètres) lors de la rentrée. La plupart de ces particules sont générées dans la mésosphère, entre 50 et 85 kilomètres (30 à 50 miles) au-dessus de la surface de la Terre.

READ  Le premier champ magnétique découvert depuis une exoplanète

L’équipe a ensuite calculé que, en fonction de la taille des particules, il faudrait jusqu’à 30 ans pour que les oxydes d’aluminium dérivent jusqu’aux hauteurs stratosphériques, où se trouvent 90 % de l’ozone troposphérique.

Les chercheurs estiment qu’au moment où les constellations de satellites actuellement prévues seront achevées, 912 tonnes d’aluminium tomberont sur Terre chaque année. Cela libérerait environ 360 tonnes d’oxydes d’aluminium par an dans l’atmosphère, soit une augmentation de 646 % par rapport aux niveaux naturels.

L’étude a été publiée dans la revue en libre accès AGU Lettres de recherche géophysiqueentièrement lisible ici.

Continue Reading

Trending

Copyright © 2023