Connect with us

science

Capturez tout ce qui brille dans les galaxies

Published

on

Crédit : Centre de vol spatial Goddard de la NASA

Une équipe de recherche internationale étudiera les étoiles, les amas d’étoiles et la poussière dans 19 galaxies proches.

Pour comprendre les galaxies, vous devez comprendre comment les étoiles se forment. Plus de 100 chercheurs du monde entier ont collaboré pour compiler des observations de galaxies spirales proches prises avec les télescopes radio, visibles et ultraviolets les plus puissants au monde – et ajouteront bientôt une suite complète d’images infrarouges haute résolution de Nasac’est Télescope spatial James Webb. Grâce à cet ensemble de données révolutionnaire, les astronomes pourront étudier les étoiles lorsqu’elles commencent à se former dans des nuages ​​​​de gaz sombres et poussiéreux, les démêler lorsque ces étoiles naissantes explosent loin de ce gaz et de cette poussière, et identifier les étoiles plus matures qui crachent. des couches de gaz et de poussière, tout cela, pour la première fois dans une variété de galaxies spirales.

Galaxie NGC 3351

Cette image de la galaxie spirale NGC 3351 combine les observations de plusieurs observatoires pour révéler des détails sur ses étoiles et ses gaz. Les observations radio du Atacama Large Millimeter/Submatrix Array (ALMA) montrent un gaz moléculaire dense en violet. L’instrument MUSE (Multi-Unit Spectral Explorer) du Very Large Telescope se distingue alors que de jeunes étoiles massives illuminent leur environnement en rouge brillant. Les images du télescope spatial Hubble mettent en évidence les bandes de poussière en blanc et les étoiles nouvellement formées en bleu. Les images infrarouges haute résolution du télescope spatial Webb aideront les chercheurs à déterminer où les étoiles se forment derrière la poussière et à étudier les premiers stades de la formation des étoiles dans cette galaxie. Crédit : Science : NASA, ESA, ESO-Chili, ALMA, NAOJ, NRAO ; Traitement d’image : Joseph DePasquale (STScI)

Les spirales sont parmi les formes les plus captivantes de l’univers. Ils apparaissent dans des coquillages complexes, des toiles d’araignées soigneusement construites et même dans les boucles des vagues de l’océan. Les spirales à l’échelle cosmique – comme on le voit dans les galaxies – sont encore plus impressionnantes, non seulement pour leur beauté, mais aussi pour la quantité d’informations qu’elles contiennent. Comment se forment les étoiles et les amas d’étoiles ? Jusqu’à récemment, la réponse complète était hors de portée, barrée par le gaz et la poussière. Au cours de sa première année d’exploitation, le télescope spatial James Webb de la NASA aidera les chercheurs à réaliser une cartographie plus détaillée du cycle de vie stellaire à l’aide d’images infrarouges haute résolution de 19 galaxies.

READ  Livre d'histoire : Mission sur la Lune

Le télescope fournira également quelques « pièces de puzzle » clés qui manquaient jusqu’à présent. « JWST touche de nombreuses phases différentes du cycle de vie stellaire – toutes avec une précision incroyable », a déclaré Janice Lee, scientifique en chef à l’observatoire NOIRLab Gemini de la National Science Foundation à Tucson, en Arizona. « Webb révélera la formation d’étoiles à ses débuts, tout comme le gaz s’effondre pour former des étoiles et la poussière environnante se réchauffe. »

Leigh a été rejoint par David Thalker de l’Université Johns Hopkins à Baltimore, Maryland, Katherine Krickell de l’Université de Heidelberg en Allemagne, et 40 autres membres du programme d’enquête à plusieurs longueurs d’onde connu sous le nom de PHANGS (High Angular Resolution Physics of Near Galaxies). leur mission ? Non seulement pour percer les mystères de la formation d’étoiles à l’aide des images infrarouges haute résolution de Webb, mais aussi pour partager des ensembles de données avec l’ensemble de la communauté astronomique afin d’accélérer la découverte.

Rythmes de formation des étoiles

PHANGS est nouveau, en partie parce qu’il a réuni plus de 100 experts internationaux pour étudier la formation des étoiles du début à la fin. Ils ciblent des galaxies visibles de face depuis la Terre et situées en moyenne à 50 millions d’années-lumière. La collaboration majeure a commencé avec des images micro-ondes de 90 galaxies dans l’amas Atacama Large Millimeter/Sub-millimeter (Alma) au Chili. Les astronomes utilisent ces données pour produire des cartes de gaz moléculaires afin d’étudier les matières premières nécessaires à la formation des étoiles. Une fois dans très grand télescopespectrophotomètre multi-unitésEspére), également au Chili, en ligne, et a obtenu des données connues sous le nom de spectres pour étudier les dernières étapes de la formation d’étoiles pour 19 galaxies, en particulier après que les amas d’étoiles aient éliminé le gaz et la poussière à proximité. basé dans l’espace Le télescope spatial Hubble Il a fourni des observations optiques visibles et ultraviolettes de 38 galaxies pour ajouter des images haute résolution d’étoiles individuelles et d’amas d’étoiles.

Galaxie NGC 1300

Cette image de la galaxie spirale NGC 1300 combine plusieurs observations pour cartographier les amas d’étoiles et les gaz. La lumière radio observée par l’Atacama Large Millimeter/Subscale Array (ALMA), représentée en jaune, met en évidence des nuages ​​de gaz moléculaire froid qui fournissent les matières premières à partir desquelles les étoiles se forment. Les données de l’instrument MUSE (Multi-Unit Spectrograph) du Very Large Telescope sont représentées en rouge et violet, capturant l’effet des jeunes étoiles massives sur le gaz environnant. La lumière visible et ultraviolette capturée par le télescope spatial Hubble met en évidence les bandes de poussière en or et les étoiles très chaudes en bleu. Les images infrarouges haute résolution du télescope spatial Webb aideront les chercheurs à déterminer où les étoiles se forment derrière la poussière et à étudier les premiers stades de la formation des étoiles dans cette galaxie.
Crédits : Science : NASA, ESA, ESO-Chili, ALMA, NAOJ, NRAO ; Traitement d’image : Alyssa Pagan (STScI)

Les éléments manquants, que Webb remplira, se trouvent en grande partie dans des régions de galaxies obscurcies par la poussière – des régions où les étoiles commencent activement à se former. « Nous verrons clairement des amas d’étoiles au cœur de ces nuages ​​moléculaires denses dont nous n’avions auparavant que des preuves indirectes », a déclaré Thalker. « Webb nous donne un moyen de regarder à l’intérieur de ces » usines à étoiles « pour voir les amas d’étoiles nouvellement assemblés et mesurer leurs propriétés avant qu’ils n’évoluent. »

READ  Deux trous noirs piégés dans une danse cosmique près du centre de la galaxie sont voués à s'effondrer

Les nouvelles données aideront également l’équipe à déterminer l’âge des groupes d’étoiles dans un échantillon diversifié de galaxies, ce qui aidera les chercheurs à construire des modèles statistiques plus précis. « Nous contextualisons toujours les petites échelles dans la grande image des galaxies », a expliqué Krickell. « En utilisant Webb, nous tracerons la séquence évolutive des étoiles et des amas d’étoiles de chaque galaxie. »

Une autre réponse importante qu’ils recherchent concerne la poussière entourant les étoiles dans le milieu interstellaire. Webb les aidera à identifier les régions de gaz et de poussière associées à des régions spécifiques de formation d’étoiles, et quelles régions interstellaires flottent librement. « Ce n’était pas possible auparavant, en dehors des galaxies les plus proches », a ajouté Thelker.

L’équipe travaille également à comprendre le moment du cycle de formation des étoiles. « Les délais sont très importants en astronomie et en physique », m’a-t-il dit. « Combien de temps dure chaque étape de la formation d’étoiles ? Comment ces échelles de temps peuvent-elles différer dans différents environnements galactiques ? Nous voulons mesurer le temps que ces étoiles se libèrent de leurs nuages ​​de gaz pour comprendre comment la formation d’étoiles est perturbée. »

connaissance pour tous

Ces notes Webb seront prises dans le cadre du programme du Trésor, ce qui signifie qu’elles sont non seulement immédiatement disponibles pour le public, mais qu’elles auront également une valeur scientifique large et durable. L’équipe créera et publiera des ensembles de données qui alignent les données de Webb avec chacun des ensembles de données complémentaires d’ALMA, MUSE et Hubble, permettant aux futurs chercheurs de creuser facilement dans chaque galaxie et ses amas d’étoiles, en basculant entre différentes longueurs d’onde et en zoomant. sur pixels photos individuelles. Ils fourniront des inventaires des différentes phases du cycle de formation des étoiles, y compris les régions de formation des étoiles, les jeunes étoiles, les amas d’étoiles et les caractéristiques de la poussière locale.

READ  La vidéo met en perspective jusqu'où la caméra James Webb peut voir

Cette recherche sera menée dans le cadre des programmes General Observer (GO) de Webb, qui sont sélectionnés de manière compétitive à l’aide d’un système de double examen anonyme, le même système utilisé pour allouer du temps sur le télescope spatial Hubble.

Le télescope spatial James Webb est le premier observatoire scientifique spatial au monde. Webb résoudra les mystères de notre système solaire, regardera au-delà des mondes lointains autour d’autres étoiles et explorera les structures et les origines mystérieuses de notre univers et notre place dans celui-ci. Webb est un programme international mené par la NASA avec ses partenaires l’ESA (Agence Spatiale Européenne) et l’Agence Spatiale Canadienne.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Les cendres des feux de forêt fertilisent les océans et stimulent la vie marine • Earth.com

Published

on

Les cendres des feux de forêt fertilisent les océans et stimulent la vie marine • Earth.com

Fin 2017, l’incendie Thomas dans le comté de Santa Barbara est devenu l’un des incendies de forêt les plus destructeurs de l’histoire de la Californie. L’incendie a entraîné une fermeture sans précédent des salles de classe Université de Californie, Santa Barbara et l’utilisation généralisée des masques N95.

Mais cet événement catastrophique représentait une opportunité unique pour les scientifiques de l’université. D’énormes quantités de cendres de feux de forêt se sont déposées dans les océans et les experts voulaient vérifier leur impact sur la vie marine.

Belle découverte

L’équipe s’est lancée dans une mission visant à comprendre les effets des cendres des incendies de forêt sur les écosystèmes océaniques – un sujet relativement inexploré par rapport aux systèmes d’eau douce.

Les chercheurs ont fait une découverte importante : les cendres des incendies de forêt peuvent fertiliser les écosystèmes marins. Cela contraste fortement avec ses effets toxiques dans les environnements d’eau douce.

Voyage de recherche

L’équipe, dirigée par Tanika Ladd, a dû s’adapter rapidement à son voyage prévu. Alors qu’un voyage de recherche était déjà prévu au calendrier, l’équipe a sauté sur l’occasion d’enquêter : « Nous avions prévu cela en quelques semaines », a déclaré Ladd.

« L’incendie s’est déclaré le 4 décembre ; Le départ de notre croisière était prévu le 17 décembre, et cela n’était clairement pas prévu pour tous les préparatifs de la croisière avant le début de l’incendie. Le groupe a rapidement réacheminé toute la croisière. Des scientifiques de renom ont envoyé une multitude de demandes de subventions et l’équipe a révisé le calendrier deux semaines avant le départ.

READ  La planète naine Ceres à son plus brillant

Comment la recherche a été menée

Eleanor Arrington, co-auteur de l’étude, a collecté des échantillons de cendres sur les pare-brise des voitures de Santa Barbara, créant une solution d’eau salée avec les cendres, puis filtrant les particules solides.

Cette solution a été ajoutée aux cultures d’eau de mer incubées sur le pont du navire de recherche.

Principaux nutriments

Les mesures de l’équipe ont indiqué une augmentation significative du carbone organique particulaire dans les échantillons complétés par du lixiviat de cendres, suggérant une croissance accrue du plancton et un retrait accru du carbone de l’atmosphère par la photosynthèse.

Une analyse plus approfondie a montré que les cendres enrichissaient l’eau de mer en nutriments essentiels tels que le nitrate, le nitrite, l’ammonium et l’acide silicique, essentiels à la croissance du phytoplancton comme les diatomées.

Les cendres ont également introduit des minéraux tels que le cuivre et le fer dans l’eau de mer. Bien que ces minéraux soient essentiels en petites quantités, ils peuvent être toxiques à des concentrations plus élevées dans les écosystèmes d’eau douce.

Cependant, l’immensité de l’océan affaiblit ces éléments, réduisant ainsi leurs dommages potentiels.

Implications de l’étude

Cette étude met en lumière les interactions complexes entre les écosystèmes terrestres et marins, notamment dans un contexte d’incendies de forêt croissants.

Les nutriments transportés par les cendres des incendies de forêt vers l’océan peuvent améliorer la production primaire dans les zones côtières, en particulier dans les zones limitées en nutriments telles que le canal de Santa Barbara.

« Les écosystèmes côtiers ont peut-être augmenté leur production primaire pendant ces incendies de forêt, mais nous devons savoir ce que cela signifie réellement à l’échelle mondiale », a déclaré Ladd.

READ  Des chercheurs prédisent à quelle vitesse l'ancien océan de magma s'est solidifié

L’étude est publiée dans la revue Actes de la Société royale des sciences biologiques.

Vous aimez ce que j’ai lu ? Abonnez-vous à notre newsletter pour recevoir des articles intéressants, du contenu exclusif et les dernières mises à jour.

—-

Visitez-nous sur EarthSnap, une application gratuite présentée par Éric Ralls et Earth.com.

Continue Reading

science

30 ans de clarté stellaire

Published

on

30 ans de clarté stellaire

L’astronaute F. Story Musgrave dans la soute de la navette spatiale Endeavour alors que les panneaux solaires du télescope spatial Hubble sont déployés lors de la dernière sortie dans l’espace de la mission 1. Crédit : NASA

La mission de la navette spatiale Endeavour de 1993 a réussi à réparer le système Le télescope spatial HubbleCorriger sa vision défectueuse et réaliser une grande réussite pour elle NASA. Cette mission a démontré la faisabilité de réparations spatiales complexes et a eu des effets durables sur l’exploration spatiale future.

Avant l’aube du 2 décembre 1993, la navette spatiale Endeavour a décollé du centre spatial Kennedy en Floride pour une mission cruciale visant à réparer le télescope spatial Hubble de la NASA.

Hubble est conçu pour être maintenu dans l’espace avec des composants dans lesquels les astronautes peuvent entrer et sortir. Mais avant le lancement, personne ne s’attendait à ce que la première mission du service soit aussi urgente.

Depuis trois ans, Hubble est au centre des bandes dessinées et des dessins animés de fin de soirée : le télescope qui ne voit pas droit. Depuis son déploiement en 1990, le télescope renvoie vers la Terre des images floues, résultat d’un défaut de forme de son miroir primaire. Bien que le miroir ne fasse qu’un cinquième de la largeur d’un cheveu humain, l’erreur a eu de graves conséquences : la lumière du miroir n’était pas focalisée correctement. Même si les images étaient encore meilleures que celles prises depuis la Terre et que la science était encore possible, leur qualité n’était pas celle attendue par le scientifique.

« Le sentiment que vous aviez était que tout le monde envisageait l’entretien et la réparation du télescope spatial Hubble comme mission qui pourrait prouver la valeur de la NASA… Il y avait cette concentration et cette pression globales sur le succès de cette mission. »
Richard Covey, astronaute lors de la première mission du service

Mission de service 1 C’était la solution. À bord de la navette se trouvaient la caméra planétaire à grand champ 2 (WFPC2) et le remplacement coaxial du télescope spatial optique correcteur (COSTAR), ainsi que d’autres composants importants de la mise à niveau du télescope. WFPC2, responsable des images optiquement impressionnantes du télescope, avait une optique corrective intégrée pour compenser le défaut du miroir et remplacera la caméra grand champ/caméra planétaire avec laquelle Hubble a été lancé. COSTAR était un composant de la taille d’un réfrigérateur contenant une constellation de miroirs, certains seulement de la taille d’un nickel américain, destinés à corriger et rediriger la lumière vers les caméras et autres spectromètres du télescope.

Sortie dans l'espace de la mission d'entretien Hubble 1 de l'astronaute Katherine C. Thornton

L’astronaute Catherine C. Thornton détient un instrument pour effectuer des tâches de mission de maintenance sur le télescope spatial Hubble lors de la quatrième sortie dans l’espace de la mission de maintenance 1. Crédit image : NASA

L’équipage de la navette, composé de sept astronautes, savait que le sort de Hubble ne reposait pas seulement sur leurs épaules, mais aussi sur la perception du public de la NASA et de son programme spatial.

READ  Les trous noirs voyous parcourent la Voie lactée plus souvent qu'on ne le pensait

« Si la solution Hubble échoue, nous pourrions abandonner la science spatiale dans un avenir proche », a déclaré John Bahcall, le regretté astrophysicien qui a défendu le télescope et membre du groupe de travail scientifique, a déclaré au New York Times en 1993.


Crédit : Centre de vol spatial Goddard de la NASA ; Productrice principale : Grace Wickert

Le 2 décembre 2023, la NASA célébrera le 30e anniversaire de la mission de maintenance 1 et son succès à faire de Hubble l’un des plus grands triomphes de la NASA : un brillant exemple de l’ingéniosité humaine face à l’adversité.

Au cours de l’une des sorties dans l’espace les plus complexes jamais réalisées, les astronautes ont mené cinq activités extravéhiculaires, totalisant plus de 35 heures. Ils ont retiré le photomètre à grande vitesse pour ajouter COSTAR et ont remplacé la caméra grand champ/planétaire d’origine par la caméra grand champ et la caméra planétaire 2. Ils ont également installé d’autres composants importants pour mettre à niveau le télescope.

Mission de service 1 équipage

L’équipage de la mission de service 1 pose pour une photo à bord de la navette spatiale. Au premier rang, de gauche à droite, le scientifique suisse Claude Nicolet, spécialiste de la mission ; Kenneth D. Bowersox, pilote ; Et Richard O. Kofi, commandant de mission. Au dernier rang se trouvent les astronautes de ce vol : F. Story Musgrave, commandant de la charge utile ; Jeffrey A. Hoffman, spécialiste de mission ; Catherine D. Thornton, spécialiste de mission ; et Thomas D. Akers, spécialiste de mission. Crédit : NASA

Le 18 décembre 1993, à 1 heure du matin, environ une semaine après la fin de la mission, les astronomes se sont rassemblés autour des ordinateurs du Space Telescope Science Institute de Baltimore pour observer la première nouvelle image du télescope : une étoile brillante et nette dans l’image. Sans les effets de flou du miroir défectueux de Hubble. Les nouvelles images étaient si radicalement différentes que, bien que le télescope ait eu besoin d’environ 13 semaines pour s’ajuster pour atteindre toutes ses capacités, la NASA l’a lancé plus tôt. « Le problème a été résolu au-delà de nos attentes les plus folles », a déclaré Ed Weiler, scientifique en chef de Hubble pendant SM1, lors d’une conférence de presse en janvier 1994.

« L’expression sur les visages des gens lorsque cette photo est sortie était vieille [cathode ray] Télévision à tube. Cela a pris du temps à se construire, mais c’est devenu de plus en plus clair. « Tout le monde se met à crier. »
Ed Weiler, scientifique en chef de Hubble pendant SM1

Galaxie spirale M100 WFPC WFPC2

Les images de la galaxie spirale M100 montrent l’amélioration de la vue de Hubble entre la caméra planétaire à grand champ et son instrument de remplacement, la caméra planétaire à grand champ 2. Source : NASA, STScI

La sénatrice Barbara Mikulski du Maryland, qui a fermement défendu Hubble, a été la première à montrer au public les nouvelles images lors d’une conférence de presse le 13 janvier. « Je suis heureuse d’annoncer aujourd’hui qu’après son lancement en 1990 et quelques déceptions précédentes, le problème de Hubble est résolu », a-t-elle déclaré.

READ  Etude de la chimie oxydée et appauvrie en fer de la croûte continentale terrestre et non issue de la cristallisation du minéral calcédoine :

Bien que l’on se souvienne surtout de la mission de service 1 pour avoir résolu la vision floue de Hubble, elle a accompli une multitude de tâches supplémentaires qui ont contribué à transformer le télescope en la centrale astronomique qu’il reste aujourd’hui.

Barbara Mikulski avant et après sa co-vedette

La sénatrice Barbara Mikulski montre une photo montrant la différence entre une image de l’étoile prise avant l’installation de COSTAR et la même étoile après la mission de service 1 lors de la conférence de presse du 13 janvier 1993 déclarant la mission réussie. Crédit : NASA

Au moment du lancement de Service Mission 1, les gyroscopes du télescope – des équipements délicats nécessaires pour pointer et diriger Hubble – avaient déjà mal fonctionné. Trois des six gyroscopes, ou gyroscopes, à bord de Hubble ont mal fonctionné. Les trois autres – normalement conservés comme sauvegardes – étaient opérationnels, le minimum requis pour que Hubble continue à collecter des données scientifiques. Les astronautes ont remplacé quatre gyroscopes, une réparation qui contribuera au bon fonctionnement du télescope pendant plusieurs années.

Au début du temps de Hubble en orbite, la NASA a découvert que les panneaux solaires du télescope se dilataient et se contractaient excessivement dans l’alternance de chaleur et de froid de l’espace lorsque le télescope entrait et sortait de la lumière du soleil, les faisant osciller. Cela a obligé les ingénieurs à utiliser la puissance de calcul de Hubble pour compenser la « gigue » et réduire le temps d’observation. Les astronautes ont remplacé les panneaux solaires de Hubble par de nouvelles versions réduisant la gigue naturelle à des niveaux acceptables.

READ  astéroïdes dans les archives | étoiles

Les astronautes ont également réalisé une amélioration dont l’importance vitale est devenue évidente un an plus tard : moderniser l’ordinateur de vol de Hubble avec un coprocesseur et la mémoire associée. Quelques semaines seulement avant l’impact de la comète en décomposition Shoemaker-Levy 9 Jupiter En 1994, Hubble est entré dans un « mode sans échec » de protection en raison d’un problème avec le module de mémoire de l’ordinateur principal. Les ingénieurs ont pu utiliser la mémoire du coprocesseur pour résoudre le problème et capturer des images époustouflantes de la géante gazeuse exposée aux fragments de comète.


En juillet 1994, le télescope spatial Hubble était sur le point d’utiliser ses optiques nouvellement installées pour observer l’un des événements astronomiques les plus impressionnants du siècle : 21 fragments de la comète Shoemaker-Levy 9 impactant Jupiter. Mais ces observations n’ont presque jamais eu lieu. Source : Centre de vol spatial Goddard de la NASA

L’impact de la Service Mission 1 a eu un écho bien au-delà de Hubble. La mission était une démonstration des tâches qui peuvent être accomplies dans l’espace, prouvant ainsi la capacité de l’humanité à effectuer des travaux très complexes en orbite. Il s’appuiera sur les enseignements tirés de la formation sur Hubble et des mêmes travaux de maintenance sur d’autres missions d’astronautes, y compris les quatre visites de service ultérieures sur Hubble entre 1997 et 2009. Ces missions supplémentaires permettront à Hubble d’installer de nouveaux instruments avancés, de réparer les instruments scientifiques existants et de remplacer des instruments clés, gardant ainsi Hubble à l’avant-garde de l’exploration astrophysique.

En outre, les leçons tirées de la Mission de Service 1 ont servi de force directrice pour l’action. Station spatiale internationale, et pour les missions qui n’ont pas encore eu lieu. « Une grande partie des connaissances développées là-bas ont été directement transférées à la construction de la Station spatiale internationale et seront transférées dans ce que nous faisons. [the future orbiting lunar space station] « Ce sera la passerelle un jour », a déclaré Kenneth Bowersox, administrateur associé de la direction des missions des opérations spatiales de la NASA, qui était également astronaute sur la mission de service 1. « Cela s’appliquera aux choses que nous faisons sur la Lune et dans l’espace lointain, Mars Et au-delà. Tout est lié. »

Pour célébrer la mission de maintenance 1, la NASA publie un Série de vidéos Au cours des deux semaines suivantes, le film présente des acteurs clés (astronautes, scientifiques, ingénieurs et autres) qui réfléchissent aux luttes et aux triomphes de cette époque, ainsi qu’à l’impact émotionnel et personnel que Hubble et SM1 ont eu sur leur vie.

Continue Reading

science

Cet article de l’Université Johns Hopkins met en évidence le rôle de la science des données dans l’accélération de la mise en correspondance probabiliste des catalogues de découvertes spatiales à travers le temps et les télescopes.

Published

on

Cet article de l’Université Johns Hopkins met en évidence le rôle de la science des données dans l’accélération de la mise en correspondance probabiliste des catalogues de découvertes spatiales à travers le temps et les télescopes.

Un gros problème dans la recherche spatiale est de savoir si les mêmes étoiles ou galaxies sont observées dans différentes études du ciel. Les télescopes actuels collectent un grand nombre de données sur des milliers, voire des milliards d’objets, en utilisant différents types de lumière. Cependant, il est très difficile de relier ces données provenant de différentes enquêtes.

Les anciennes méthodes ne pouvaient pas gérer d’énormes quantités de données diverses. Cela rendait difficile de savoir quand les scans regardaient le même objet, comme une étoile ou une galaxie, dans des images larges couvrant de vastes parties du ciel. Cela a posé un problème car les scientifiques ne pouvaient pas combiner les mesures du même objet provenant de différentes études du ciel.

Des chercheurs de l’Université Johns Hopkins ont mis au point une nouvelle façon de résoudre ce problème. Ils ont créé un programme informatique intelligent (algorithme) qui enregistre des paires d’observations provenant de différentes études du ciel. Ces scores nous indiquent la probabilité que les observations concernent le même objet. Le programme examine l’emplacement des objets, leur luminosité, leurs couleurs et d’autres détails pour décider s’ils sont identiques ou non.

Cette méthode est très précise et fonctionne bien avec d’énormes quantités de données. Il permet de relier les notes d’objets sombres et lumineux, même s’ils sont capturés différemment. Le logiciel peut parcourir des catalogues contenant des milliards d’entrées et trouver des correspondances entre objets célestes. Les résultats aident également à confirmer la validité des correspondances.

Cette nouvelle méthode de corrélation de données exploite les atouts de la science des données et des connaissances liées aux mesures spatiales. Il prend en compte les probabilités de facteurs tels que la position, la luminosité, les couleurs, etc., tout en comprenant les incertitudes des observations. Cela ouvre des opportunités passionnantes pour la science, car nous pouvons désormais dire de manière fiable quand nous observons les mêmes choses dans différentes enquêtes.

READ  La vidéo met en perspective jusqu'où la caméra James Webb peut voir

En combinant des données sur les étoiles, les galaxies et d’autres objets, les scientifiques peuvent en apprendre davantage sur leur nature, où ils se trouvent, comment ils se déplacent et comment ils évoluent au fil du temps. Cette méthode nous permet de combiner les mesures de différents types de lumière, telles que l’ultraviolet, l’infrarouge, l’infrarouge, les rayons X, les rayons gamma et les ondes radio, nous donnant ainsi une meilleure vue des objets uniques vus par différents télescopes balayant différentes parties du ciel. . C’est une nouvelle façon d’en découvrir davantage sur tout, des étoiles variables aux trous noirs massifs.


Vérifier la papier Et Matériel de référence. Tout le mérite de cette recherche revient aux chercheurs de ce projet. N’oubliez pas non plus de vous inscrire Nous avons plus de 33 000 ML SubReddit, 41 000+ communautés Facebook, Chaîne Discorde, Et Courrieloù nous partageons les dernières nouvelles en matière de recherche sur l’IA, des projets intéressants en matière d’IA et bien plus encore.

Si vous aimez notre travail, vous allez adorer notre newsletter.

Niharika est stagiaire en conseil technique chez Marktechpost. Elle est étudiante en troisième année de premier cycle et poursuit actuellement son diplôme de B.Tech à l’Institut indien de technologie (IIT) de Kharagpur. C’est une personne très enthousiaste, qui s’intéresse vivement à l’apprentissage automatique, à la science des données et à l’intelligence artificielle et qui est une fervente lectrice des derniers développements dans ces domaines.

Continue Reading

Trending

Copyright © 2023