Connect with us

science

Cartographier les plus grands trous noirs existants

Published

on

Cartographier les plus grands trous noirs existants

Les trous noirs font partie des objets les plus violents de l’univers. Ils résultent de la mort d’étoiles massives. Lorsqu’une étoile atteint la fin de sa vie, elle s’effondre sous l’effet de sa propre gravité, provoquant une explosion de supernova.

Le noyau de l’étoile continue de s’effondrer, devenant plus lourd et plus dense jusqu’à ce qu’il ne reste plus que UnicitéUn point infiniment petit d’une densité infinie – un trou noir.

Il existe de nombreux types de trous noirs, selon l’étoile dont ils sont issus.

  1. Trous noirs stellaires Les étoiles naissent à la suite de la mort d’étoiles massives et leurs masses varient de 3 à 100 masses solaires, soit la masse du Soleil (environ 1,99 x 10).30 kilogrammes).
  2. Trous noirs intermédiaires (IMBH) Ces étoiles ne sont pas encore bien comprises. On pense que leur formation est le résultat de la fusion de trous noirs stellaires. Sa masse varie de 100 à 1 000 masses solaires.
  3. Trous noirs supermassifs Ces galaxies se trouvent au centre de presque toutes les galaxies et leurs masses varient de millions à milliards de masses solaires.

Explorons les sept plus grands trous noirs de l’univers, qui ont des propriétés différentes. Cette liste est basée sur leur masse (en termes de masse solaire).

Veuillez noter que toutes les masses sont approximatives.

1. Phénix A

Masse: 100 milliards de masses solaires

position: Groupe Phénix

Groupe Phénix. Crédit image : NASA/Centre de recherche ExxonMobil/MIT/M. McDonald et al. et NASA/Institut des sciences et technologies spatiales.

L’amas Phoenix est une galaxie massive composée de milliers de galaxies liées gravitationnellement. Cela en fait l’un des plus grands groupes de galaxies que nous connaissons.

Au centre de cet amas se trouve la galaxie centrale Phoenix A, qui contient des noyaux galactiques actifs (AGN). Les trous noirs supermassifs alimentent les noyaux galactiques actifs et jouent un rôle crucial dans la formation et l’évolution des galaxies.

Le trou noir supermassif au centre de Phoenix A est vital pour l’activité des noyaux galactiques actifs. Selon les modèles théoriques, la masse du trou noir supermassif est de 100 milliards de masses solaires. Cela signifie qu’il s’agit peut-être du plus grand trou noir connu.

Sa circonférence est si grande qu’il faut 71 jours et 14 heures pour orbiter autour d’elle – si vous voyagez à la vitesse de la lumière !

Le diamètre de Schwarzschild de son horizon des événements est d’environ 590,5 milliards de kilomètres, ce qui est suffisamment massif pour éclipser l’ensemble de notre système solaire. Le diamètre de Schwarzschild est la limite théorique autour d’un trou noir non tournant duquel rien ne peut s’échapper.

READ  Qu'est-ce qu'une balle Dyson ?

2.IC 1101

Masse: 40 à 100 milliards de masses solaires

position: Amas de galaxies Abell 2029

Image de l'IC 1101.
Galaxy IC 1101. Crédit image : Legacy Surveys/D. Lang (Institut Périmètre).

La galaxie IC 1101 est une galaxie lenticulaire. Ces galaxies se situent entre spirale et elliptique en termes de forme. Elles ont une structure de disque similaire à celle des galaxies spirales, mais sont dépourvues de bras spiraux. Dans ces galaxies, il y a peu de formation d’étoiles en cours.

Au centre d’IC ​​1101 se trouve un trou noir dont la masse est estimée entre 40 et 100 masses solaires. Les estimations sont basées sur différents modèles théoriques et sur des résultats d’observation pertinents, c’est pourquoi la variance est si grande.

L’existence d’un trou noir est déduite des effets gravitationnels sur le gaz proche.

3. 618 tonnes

Masse: 40,7 milliards de masses solaires

position: Près de la constellation Saluki et de la constellation Corona

Image de la galaxie TON 618.
Galaxie TON 618 Crédit image : Sloan Digital Sky Survey, Observatoire Apache Point, Consortium de recherche astrophysique.

Les quasars sont une sous-classe de noyaux galactiques actifs. TON 618 est considéré comme un quasar ultralumineux, c’est-à-dire très brillant. Il est pertinent pour comprendre la formation et l’évolution des galaxies.

Au centre de TON 618 se trouve un trou noir supermassif d’une masse de 40,7 milliards de masses solaires. La masse du trou noir supermassif est estimée à partir de données d’observation sur les spectres d’émission des quasars, qui ressemblent à l’empreinte du pouce d’un quasar.

Image comparative des trous noirs de Phoenix A et TON 618.
Comparaison de l’horizon des événements de Phoenix A, TON 618 et de l’orbite de Neptune. Crédit image : Varn29/Wikimédia Commons.

Sa luminosité est environ 140 000 milliards de fois supérieure à celle du Soleil. Grâce à sa luminosité, il fournit des informations cruciales sur le comportement du trou noir supermassif et de son disque d’accrétion, le disque rotatif de gaz et de poussières dans lequel il tombe.

Le quasar TON 618 contient également une grande quantité d’hydrogène neutre, l’élément le plus abondant dans l’univers. Il constitue l’élément de base à partir duquel ces structures sont construites. C’est donc d’une grande importance pour les scientifiques.

4. T5 0014+81

Masse: 40 milliards de masses solaires

position: Près de la constellation de Céphée

Un artiste représente un trou noir supermassif dont la masse est des millions à des milliards de fois celle de notre Soleil.
Représentation artistique d’un trou noir supermassif avec une masse de milliards de masses solaires. Crédit image : NASA/JPL-Caltech.

La galaxie hôte est un FSRQ (Flat Spectrum Radio Quasar), une galaxie elliptique géante à luminosité intense. Comme TON 618, il contient également un noyau galactique actif et un trou noir supermassif au centre.

En raison de sa luminosité élevée, la masse du trou noir supermassif a été estimée à l’aide des spectres d’émission de la galaxie hôte. Sa masse est de 40 milliards de masses solaires, soit l’équivalent de quatre Grands Nuages ​​de Magellan (les galaxies satellites les plus grandes et les plus massives en orbite autour de la Voie Lactée).

READ  Les propriétés des roches soumises à des pressions extrêmes sont difficiles à mesurer. Des scientifiques proposent une solution simple à un problème très difficile - ScienceDaily

Le trou noir supermassif de Schwarzschild a un diamètre de 240 milliards de kilomètres, soit la moitié du diamètre du trou noir supermassif de la galaxie Phoenix A.

Selon les modèles d’évolution, la galaxie hôte s’est formée au début de l’univers environ 1,6 milliard d’années après le Big Bang et survivra encore 1,3 × 10 ans.99 Années!

5. Vaccin Abell 1201 BCG

Masse: 32,7 milliards de masses solaires

position: Groupe galaxie Abell 1201

Une vue du groupe de galaxies Abell 1201, montrant sa galaxie géante Abell 1201 BCG.
Groupe galaxie Abell 1201. Crédit image : Enquêtes sur le patrimoine/Dr. Lange (Institut Périmètre).

Abell 1201 BCG, ou galaxie la plus brillante de l’amas, est la galaxie la plus brillante de l’amas près du centre. La galaxie héberge un trou noir supermassif d’une masse de 32,7 milliards de masses solaires, selon Etude 2023.

En raison de sa taille massive et de son influence gravitationnelle, le trou noir agit comme une lentille gravitationnelle, courbant le trajet de la lumière provenant d’une galaxie plus lointaine située derrière lui.

Cet effet de courbure crée une distorsion visible de la forme de l’image de la galaxie d’arrière-plan, utilisée pour estimer la masse du trou noir supermassif.

La distribution de la matière noire affecte également la lentille gravitationnelle. Cette galaxie est donc un candidat important pour l’étude des propriétés de la matière noire.

6. NGC 4889

Masse: 21 milliards de masses solaires

position: Groupe Coma Nord

Image en fausses couleurs prise par la NASA avec le télescope spatial Spitzer.
Image en fausses couleurs du cluster Kuma. Crédit image : NASA/JPL/Caltech/L. Jenkins (Centre de voile Goddard).

Au nord de l’amas de Coma se trouve la galaxie hôte (NGC 4889), une galaxie elliptique géante qui abrite un trou noir supermassif. Selon les modèles théoriques, la masse du trou noir supermassif se situe entre 6 et 37 milliards de masses solaires. La meilleure estimation est d’environ 21 milliards de masses solaires.

Le trou noir supermassif est actuellement stationnaire, n’accumulant aucune matière et n’émettant aucun rayonnement. Cela rend la mesure de sa masse plus difficile. Cependant, compte tenu de leur état, il est intrigant de comprendre comment les trous noirs massifs évoluent en quasars actifs.

Ces trous noirs massifs influencent également la dynamique et l’évolution de la galaxie et de ses environs.

7. Messier 87

Masse: 6,5 milliards de masses solaires

position: Vierge

Vue du trou noir supermassif M87 en lumière polarisée.
Bombardier M87 SMBH. Crédit image : Coopération dans le domaine de l’EHT.

Messier 87 ou M87, comme NGC 4889, est une galaxie elliptique géante située dans la constellation de la Vierge. Il héberge en son centre le seul trou noir géant jamais observé.

En 2019, la toute première image de celui-ci a été publiée à l’aide des données collectées par le Event Horizon Telescope (EHT). Les mêmes données ont également été utilisées pour estimer sa masse à 6,5 milliards de masses solaires.

READ  La valorisation de SpaceX est en hausse de 12%, selon le fonds où le lance-roquettes prend la tête

Le trou noir supermassif au centre de la galaxie est le principal composant du noyau galactique actif trouvé dans la galaxie. Il est entouré d’un disque rotatif de gaz ionisé, perpendiculaire au jet relativiste, un étroit flux de plasma émis près du centre.

Le jet relativiste lui-même s’étend sur 5 000 années-lumière. Il s’agit de la distance entre la Terre et le centre du complexe du nuage moléculaire d’Orion, une région de formation d’étoiles proche.

La proximité de la galaxie M87 et une vue dégagée sur le trou noir supermassif sont essentielles pour étudier la dynamique et l’évolution du trou noir. De plus, la galaxie contient des noyaux galactiques actifs, ce qui rend intéressante l’étude de l’évolution des galaxies.

Le milieu interstellaire entourant la galaxie est riche en éléments provenant d’étoiles en évolution. Selon les données d’observation, sa structure externe est formée par son interaction avec les galaxies voisines.

Limite théorique

Une chose que vous avez peut-être remarquée dans cette liste est qu’à l’exception du trou noir supermassif de Phoenix A, tous les trous noirs ont une masse inférieure à 100 milliards de masses solaires, et il y a une raison à cela.

Il existe une limite supérieure théorique à la masse qu’un trou noir peut avoir, basée sur les effets des radiations, qui peuvent ralentir la croissance des trous noirs et la formation d’étoiles dans un environnement de disque d’accrétion, qui régule également la croissance des trous noirs.

Selon les modèles théoriques, le maximum atteint 270 milliards de masses solaires, en fonction de l’âge de l’univers et de la quantité de matière qu’il contient.

Cela met en évidence la dynamique complexe de la formation et de l’évolution des trous noirs et combien il est difficile d’estimer leur masse dans des environnements denses et complexes tels que les amas de galaxies.

les nouvelles

Planificateur quotidien

Recevez les dernières nouvelles liées à l’ingénierie, à la technologie, à l’espace et à la science avec The Blueprint.

À propos de l’éditeur

Tejasree Gururaj Tikhasri est une écrivaine et conférencière scientifique aux multiples talents, qui met à profit l’expertise de sa maîtrise en physique pour rendre la science accessible à tous. Pendant son temps libre, elle aime passer du temps de qualité avec ses chats, regarder des émissions de télévision et se ressourcer avec des siestes.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Développement de nouveaux aptamères d’ADN de mélanopsine pour réguler les rythmes circadiens

Published

on

Développement de nouveaux aptamères d’ADN de mélanopsine pour réguler les rythmes circadiens

résumé:

Les aptamères d’ADN de mélanopsine qui régulent l’horloge des rythmes biologiques ont été développés par l’Université de technologie de Toyohashi et le groupe de l’Institut national des sciences et technologies industrielles avancées (AIST).

Les aptamères d’ADN peuvent se lier spécifiquement aux biomolécules pour moduler leur fonction, ce qui en fait des agents thérapeutiques idéaux pour les oligonucléotides. Nous avons examiné l’aptamère ADN mélanopsine (OPN4), un photopigment bleu de la rétine qui joue un rôle clé dans l’utilisation des signaux lumineux pour réinitialiser la phase des rythmes circadiens de l’horloge centrale.

Tout d’abord, 15 aptamères d’ADN de mélanopsine (Melapts) ont été identifiés après huit cycles de Cell-SELEX en utilisant des cellules exprimant la mélanopsine sur la membrane cellulaire. Une analyse fonctionnelle ultérieure de Melapt a été réalisée dans une lignée cellulaire de fibroblastes exprimant de manière stable à la fois Période 2:ELuc et la mélanopsine en déterminant dans quelle mesure ils réinitialisent la phase des rythmes circadiens des mammifères en réponse à la stimulation de la lumière bleue. Période 2 L’expression rythmique a été surveillée sur une période de 24 heures Période 2 : ELuc: Thymidine kinase (TK):OPN4 Fibroblastes stables exprimant la mélanopsine. À l’aube, quatre mélaptes ont avancé leur phase de> 1, 5 h, tandis que sept mélaptes ont retardé leur phase de> 2 h. Un petit nombre de mélaptes a induit un déphasage d’environ 2 h, même en l’absence de stimulation lumineuse, peut-être parce que les mélaptes ne peuvent influencer que partiellement les signaux d’entrée pour le déphasage. De plus, quelques mélaptes ont provoqué des déphasages dans Période 1:: Des souris transgéniques luc (Tg) ont été utilisées pour surveiller les rythmes circadiens à travers… Période 1 Expression rythmique.

Ces aptamères d’ADN pourraient avoir la capacité d’affecter la mélanopsine In vivoEn résumé, les aptamères Melapts peuvent réguler avec succès le signal d’entrée et le déphasage (à la fois avance de phase et retard de phase) des rythmes circadiens des mammifères. dans le laboratoire Et In vivo.

détails:

Améliorer indirectement le cycle veille-sommeil en manipulant la capacité de la mélanopsine à transmettre des signaux à l’horloge centrale serait socialement et économiquement bénéfique.

READ  Exploitez la puissance de la diffusion quantique virtuelle

La mélanopsine est une protéine photoréceptrice exprimée dans les cellules ganglionnaires de la rétine qui absorbent la lumière bleue avec une absorption maximale de 477 nm. La mélanopsine est connue pour jouer un rôle important dans la réinitialisation de phase de l’horloge circadienne des mammifères par la lumière bleue et dans l’expression rythmique des gènes de l’horloge, par ex. Période 1,2 (Par1,2). La phase de l’horloge circadienne moléculaire est réinitialisée et dépend du moment de la stimulation lumineuse et de l’induction de la lumière transitoire. Pour chaque 1 Par les photorécepteurs de la mélanopsine (Figure 1). Récemment, les antagonistes de la mélanopsine acquis grâce au criblage chimique de bibliothèques chimiques contribuent principalement au retard de phase du rythme.

Dans cette étude, nous avons utilisé l’évolution cellulaire systématique des ligands par la méthode d’enrichissement exponentiel (Cell-SELEX) pour identifier les aptamères d’ADN (ADN simple brin ; ADNsb) qui provoquent un déphasage de la mélanopsine dans les rythmes circadiens. Au total, 15 aptamères de mélanopsine (Melapts 1 à 15) ont été analysés pour évaluer leur capacité à déphaser les rythmes circadiens. Par2::ELuc oscillations vitales dans Par2:ELuc:TK:Mel cellules stables, où suit le rapporteur biologique Par2 La région promotrice qui contrôle l’amplificateur de la luciférase émet une couleur verte à partir de Periarinus tremeteluminans, avec une expression accrue de la mélanopsine sous le contrôle du promoteur de la thymidine kinase (TK). Dans ces lignées de fibroblastes stables, la voie de signalisation est intégrée dans un fibroblaste imitant la voie de signalisation allant de la rétine à l’horloge centrale (noyau ou noyaux suprachiasmatiques : SCN) par la mélanopsine (Figure 2).

Les aptamères d’acide nucléique sont des molécules d’ARN/ARN courtes et simple brin qui peuvent se lier sélectivement à des cibles, protéines, peptides et autres molécules spécifiques, et peuvent être utilisées en clinique pour modifier la fonction des molécules cibles. Les principaux avantages de ces aptamères incluent leur spécificité cible élevée, leur immunogénicité et leur facilité de synthèse.

READ  La valorisation de SpaceX est en hausse de 12%, selon le fonds où le lance-roquettes prend la tête

Parmi les 15 aptamères d’ADN de mélanopsine (Melapts), quatre melapts ont provoqué une avance de phase et sept melapts ont provoqué un retard des rythmes circadiens (de > 1,5 h et > 2 h, respectivement) chez Par2::Lignée cellulaire ELuc. Un petit nombre de cellules Melapts ont induit des déphasages d’une durée d’environ 2 h, même en l’absence de photostimulation dans le laboratoire.

Melapt04 et Melapt10 ont induit une avance ou un retard de phase circadienne d’environ 3 heures, respectivement, dans CT22 et CT8 pendant le processus d’entrée du signal lumineux. Cela suggère que Melapt04 régule la phase des rythmes circadiens et facilite le sommeil et l’éveil, principalement par la progression des phases (Figure 3-5). Il existe deux types de mélaptes qui avancent et retardent le déphasage dans la même direction, quel que soit le moment du stimulus lumineux. Cependant, les trois Melaptes ont avancé et retardé le déphasage dans des directions opposées à l’aube et au crépuscule. Par conséquent, ces Melaptes devraient être utiles dans la régulation des phases des rythmes (Figures 6,7).

Nous avons joué In vivo Expériences similaires à dans le laboratoire Expériences visant à déterminer si la liaison de Melapt à la mélanopsine dans la rétine s’étendant jusqu’au noyau suprachiasmatique affecte les déphasages de l’horloge centrale du noyau suprachiasmatique. Pour chaque 1::Luc Souris transgéniques : des souris qui Pour chaque 1::Luc Le gène recombiné a été inséré dans le génome de toutes les cellules. Pour chaque 1::Luc C’est un gène recombiné Pour chaque 1 La région promotrice suit l’enzyme luciférase dérivée de la luciole en tant que rapporteur pour surveiller les rythmes circadiens.

Huit types de réponses de déphasage provoquant Melapt Par2 Des rythmes d’expression lors d’expériences in vitro ont été injectés dans des follicules oculaires Pour chaque 1:: souris Luc Tg à CT22 (Figure 8, 9). Melapt01, Melapt03, Melapt04, Melapt07, Melapt09 et Melapt10 ont montré des capacités de transformation de phase similaires à celles de Par2:ELuc:TK:Cellules stables Mel: In vivo Et dans le laboratoire.

L’effet de Melabit sur la transformation de phase dans… In vivo Les expériences peuvent être prédites à partir de dans le laboratoire De plus, des déphasages brutaux de trois heures ont été identifiés chez des animaux intacts, quel que soit l’ampleur de l’avance ou du retard des mélaptes dans Par2:Eluk:TK:Cellules de Mel.

READ  Qu'est-ce qu'une balle Dyson ?

En conclusion:

En résumé, Melapts a pu réguler les signaux d’entrée et les déphasages pour obtenir une avance et un retard de phase dans les rythmes circadiens des mammifères. dans le laboratoire Et In vivo.

Les mélaptes pourraient contribuer aux recherches futures axées sur la réinitialisation des phases circadiennes. Les mélaptes pourraient nous aider à mieux nous adapter aux cycles de vie sociale modernes, permettre d’optimiser les cultures et les animaux domestiques pour une plus grande productivité et aider les travailleurs postés à surmonter le décalage social en ajustant les phases circadiennes. Ces mélaptes pourraient contribuer à réinitialiser la phase des horloges circadiennes dans les voies d’entrée photosynthétiques.

Organisme de financement:

Cette étude a été financée par un financement de recherche de TechnoPro Inc. TechnoPro R&D et le programme de parrainage des Jeunes Chercheurs en Recherche Interdisciplinaire de Pointe (RN). Le financement pour les scientifiques de Keban (n° RN 24590350 et 20H00614) a été obtenu de la Société japonaise pour la promotion de la science (JSPS), de la Mitsubishi Science Foundation (à RN) et d’une subvention de recherche pour l’innovation en science et technologie à l’Université de Toyohashi. de technologie (à RN). Cette étude a également été soutenue par le ministère de l’Éducation, de la Culture, des Sports, de la Science et de la Technologie du Japon (YN 21H02083).

source:

Référence dans le magazine :

Nakazawa, K. et autres(2024). Les aptamères d’ADN de mélanopsine peuvent réguler les signaux d’entrée des rythmes circadiens des mammifères en modifiant la phase de l’horloge moléculaire. Frontières des neurosciences. est ce que je.org/10.3389/fnins.2024.1186677.

Continue Reading

science

Un chercheur développe une méthode pour convertir la chaleur en énergie pour les engins spatiaux

Published

on

Un chercheur développe une méthode pour convertir la chaleur en énergie pour les engins spatiaux

La source d’énergie développée par Yi Cheng, professeur à la Northeastern University, utilisera la chaleur perdue générée par les équipements spatiaux et la lumière du soleil qui n’atteint pas la Terre.

Le tir à la tête de Ye Cheng.
Yi Cheng, professeur adjoint de génie mécanique et industriel, mène des recherches sur le toit de Snell Engineering le 7 juin 2021. Photo : Robbie Wallau/Northeastern University

Un chercheur de la Northeastern University développe un dispositif qui capte la chaleur perdue des équipements spatiaux et la lumière solaire réfléchie et la transforme en source d’énergie pour les vaisseaux spatiaux et les rovers martiens de l’US Air Force.

« Même si cela ne peut fournir que 10 à 15 % d’énergie de secours pour l’électronique, nous pouvons prolonger la durée de vie de l’électronique et du vaisseau spatial », dit-il. Yi Chengprofesseur agrégé de génie mécanique et industriel et directeur du Nanoscale Energy Laboratory de Northeastern.

Cheng travaillera sur le dispositif thermique en collaboration avec Faraday Technology, une société basée dans l’Ohio spécialisée dans le développement de technologies d’ingénierie électrochimique appliquée pour le gouvernement américain et les clients commerciaux.

« Notre objectif est de concevoir un absorbeur et un émetteur thermique hautes performances capables d’absorber, de convertir et d’émettre de l’énergie à la longueur d’onde souhaitée », explique Cheng.

Il affirme que cette technologie serait adaptée aux voyages spatiaux à court et à long terme, notamment à une utilisation sur la Lune, sur Mars ou même sur des satellites lancés depuis notre galaxie.

Au cours des dernières années, Cheng a développé des matériaux pour la récupération et le stockage de l’énergie, les déchets d’énergie et les nanomatériaux.

READ  Une magnifique galaxie spirale repérée par le télescope Hubble dans une nouvelle image

Il affirme que la principale source d’énergie dans l’espace est généralement le soleil, avec des panneaux solaires haute performance convertissant la lumière du soleil en énergie pour alimenter les équipements spatiaux.

La source d’énergie développée par Cheng utilisera la chaleur perdue générée par les équipements spatiaux et dissipée dans l’espace, ainsi que la lumière du soleil qui n’atteint pas la Terre et est réfléchie par l’atmosphère.

Cheng affirme que les engins spatiaux et les équipements spatiaux doivent fonctionner dans des conditions extrêmes : des températures extrêmement basses (généralement moins 554 degrés Celsius ou moins 270 degrés Celsius) et un vide quasi total. De plus, la conduite d’engins spatiaux nécessite des ressources énergétiques.

« Nous ne pouvons pas simplement libérer un autre réservoir d’oxygène [for example] « Pour voyager, explique Cheng.

Les appareils électroniques fonctionnant sur des vaisseaux spatiaux ou sur des surfaces à haute température produiront un rayonnement thermique, ou lumière infrarouge, invisible à l’œil nu mais pouvant être détecté comme une sensation de chaleur sur la peau, explique Cheng. Cette chaleur se dissipera dans l’espace et sera perdue.

La chaleur résiduelle existe presque partout, y compris sur Terre, explique Cheng. Par exemple, un moteur chaud ou un four chauffé à haute température dissipe également une partie de cette chaleur.

Cheng affirme que la récupération de cette énergie a été étudiée au cours des dernières décennies et que son équipe appliquera des techniques récemment développées dans la conception de son système thermique.

Premièrement, les chercheurs testeront différents matériaux et surfaces artificiels – respectivement appelés métamatériaux et métasurfaces – afin d’utiliser l’absorbeur de chaleur proposé. Les métamatériaux ont certaines propriétés que l’on ne remarque pas dans les matériaux naturels. Ils n’existent pas naturellement sur Terre, ils doivent donc être fabriqués à l’échelle nanométrique en laboratoire, explique Cheng.

READ  Comment se terminera la mission Mars Insight de la NASA

Selon Cheng, le problème avec les matériaux courants est qu’ils n’ont pas de propriétés d’absorption ou d’émission élevées aux longueurs d’onde requises pour l’énergie infrarouge. Cheng dit que la longueur d’onde de la lumière infrarouge se situe entre 1,5 et 2,5 micromètres, ce qui est environ 12 à 24 fois inférieur au diamètre d’un cheveu humain.

«Cela nécessite donc un travail théorique et expérimental de la part de notre groupe», dit-il. « En fait, mes intérêts de recherche se concentrent sur le réglage actif et dynamique des propriétés thermiques, rayonnantes et optiques. [of materials] ». »

« Nous devons également équilibrer le poids et le coût », explique Cheng. « Nous devons équilibrer beaucoup de choses. Ainsi, étant donné le choix limité de matériaux utilisés dans l’espace, cela nous a amené à réfléchir à l’utilisation de la nanotechnologie pour concevoir des matériaux fonctionnels en tant que dispositif thermique. »

Il affirme que même si la nanotechnologie, ou les nanomatériaux, coûte cher, elle fonctionne très bien. Sans nanotechnologie, il est impossible d’absorber des longueurs d’onde spécifiques dans des conditions extrêmes.

Cheng affirme que les scientifiques utilisent des matériaux résistants à la chaleur pour fabriquer des nanomatériaux, qui sont stables, ont un point de fusion élevé dépassant 2 700 degrés (ou 1 500 degrés Celsius) et une longue durée de vie.

Un bon candidat est le tungstène, un métal rare avec les points de fusion et d’ébullition les plus élevés parmi les éléments connus sur Terre, explique Cheng. Cheng ne s’appuie pas uniquement sur ce matériau, mais lorsqu’il est combiné avec d’autres matériaux, il peut être utile dans les conditions difficiles de l’espace.

READ  La dernière éclipse solaire de 2021 : quand, comment regarder et visibilité

Cheng passe cet été en tant que membre du corps professoral de la NASA au Glenn Research Center de Cleveland. Il mène des recherches sur la gestion de la chaleur pour la campagne Artemis qui vise à ramener les Américains sur la Lune en préparation de la première mission habitée vers Mars.

« J’espère vraiment que ce que je fais pour l’Air Force et la NASA contribuera en fait aux futurs projets de voyages spatiaux plus longs », a déclaré Cheng.

les sciences et la technologie

Histoires modernes

Actualités, découvertes et analyses du monde entier

Continue Reading

science

Regardez la lune recouvrir l’étoile géante bleue Spica le 13 juillet

Published

on

Regardez la lune recouvrir l’étoile géante bleue Spica le 13 juillet

L’un des événements les plus intéressants de l’astronomie optique, et certainement le plus rapide, se produit lorsque la Lune éclipse une étoile. Le bord de la lune se rapproche, semble appuyer dessus pendant plusieurs secondes, puis l’étoile disparaît soudainement ! Il réapparaît à la même vitesse sur la face cachée de la Lune jusqu’à une heure ou plus plus tard.

Le samedi 13 juillet, toute personne disposant d’un télescope et d’un ciel dégagé devrait se concentrer sur la lune de ce soir-là, juste après son premier quartier (éclairée à 52 %). À ce moment-là, la Lune passera devant l’étoile de première magnitude Cygnus Spongiosa vue d’Amérique du Nord.

Continue Reading

Trending

Copyright © 2023