Connect with us

science

Circuit quantique supraconducteur pour NOR dans le recuit quantique

Published

on

Circuit quantique supraconducteur pour NOR dans le recuit quantique

Caractéristiques de fonctionnement NOR et NAND

NOR est connu pour être une unité de calcul polyvalente. Dans notre méthode, l’hamiltonien est conçu pour réduire la puissance des composants logiques NOR. Le circuit quantique supraconducteur est construit par implémentation directe du circuit hamiltonien illustré sur la figure supplémentaire 1 (a). Deux types d’échantillons constitués de trois qubits correspondant à . sont préparés une Et le B pour la saisie et s Pour le résultat booléen, avec des courants critiques (jec) de 6,25 A (NOR1) et 3,75 A (NOR2). Le modèle de configuration est décrit dans la section « Méthodes ». Composantes booléennes de NOR, correspondant à quatre groupes de (uneEt le BEt le s) avec une puissance minimale, apparaissent au point de dissolution après assurance qualité. Théoriquement, le point de dissolution est exprimé par.

$$ I_{h2} = \frac {{M_{23}}}{{M_{31}}}\cdot I_{h1}$$

Et le

$$ I_{h3} = \frac {{M_{1}}}{{M_{3}}}\cdot\frac {{M_{23}}}{{M_{12}}}\cdot I_{h1 } $$

(1)

jehje (je = 1–3) est le biais externe du qubit je(correspondant aux étiquettes une Et le B,Et le s ), Mje (je = 1–3) est l’inductance mutuelle entre les qubits jeet la ligne de polarisation externe, et MJE (je= 1–3, y= 1–3) est l’induction mutuelle entre les qubits jeEt le y. Processus de dérivation d’équation. (1) Décrit dans Méthodes supplémentaires. Les inductances des qubits et leurs inductances mutuelles sont extraites du schéma de circuit (voir Méthodes). Les points de décroissance théoriques de NOR1 et NOR2 sont estimés comme (jeh1Et le jeh2Et le jeh3) = (1.4, 1.4, 3.1) et (1.3, 1.3, 2.8) [µA], successivement. Les figures 1a-c montrent respectivement les diagrammes d’état obtenus à partir de la théorie, à partir de simulations utilisant le Josephson Integrated Circuit Simulator (JSIM)27 avec jeh3= 2,0 µA, et d’expérience avec jeh3= 2,0 µA réalisé à 10 mK. Le JSIM détaillé et les méthodes expérimentales sont présentés dans la section Méthodes et dans la section « Configuration expérimentale » des Méthodes supplémentaires, respectivement. Dans l’analyse JSIM, le courant de bruit thermique est négligé afin de mettre l’accent sur la direction de l’état limite dans chaque composant logique. Un point d’arrêt est trouvé, où chaque composant booléen d’un NOR apparaît, sur l’état actuel de (jeh1Et le jeh2 Et le jeh3 ) = (1.8, 1.8, 2.0) [µA] Tant dans les expériences que dans l’analyse JSIM dans NOR1. La figure supplémentaire 3 montre la distribution itérative des composants logiques dans les expériences réalisées au point de dissolution. Des composantes booléennes correspondant à l’énergie minimale hamiltonienne sont générées de manière sélective. Dans le diagramme de cas, la frontière se trouve le long de la direction diagonale, que nous appelons une « échelle » pour plus de commodité. Lorsque l’échelle monte en diagonale vers la gauche jeh3Il diminue à partir du point de dissolution (Fig. 1d-f). D’autre part, une échelle qui monte en diagonale dans la bonne direction est créée lorsque jeh3Il augmente le point de dissolution (Fig. 1g-i). Ces tendances sont qualitativement cohérentes avec la théorie, l’analyse JSIM et les expériences. Au point de décroissance obtenu expérimentalement, les composants logiques du NOR se produisent de manière aléatoire (voir la Fig. 4 supplémentaire et la section «Caractéristiques détaillées du processus NOR» dans la note supplémentaire). Notez que nous pouvons produire un composant logique souhaité en appliquant un courant de compensation approprié (α) contre le point de décroissance. Par exemple, le composant logique de (uneEt le B) = (0, 1) peut être considéré en appliquant le biais de sortie de (jeh1 ‘, jeh2 ′) = (jeh1-α, jeh2+ a). Cela correspond à la dépendance de α le long de la direction diagonale du point de décroissance. En appliquant une valeur appropriée de α, la logique NOR peut être reproduite avec une grande précision (voir Fig. 5 supplémentaire). Nous confirmons que l’injection de flux dans l’un des qubits en adoptant α dans l’état initial restreint l’état des autres qubits car les qubits interagissent les uns avec les autres pour réduire l’énergie après QA. De plus, ce circuit quantique se comporte comme une NAND lorsque jehIl est fourni avec un signe négatif. Dans le tracé d’état NAND, la valeur absolue du point de dégénérescence est presque la même que la valeur de NOR. Les frontières de chaque composant logique sont modifiées par jeh3, Il en va de même pour NOR (voir Fig. 6 supplémentaire et la section «Fonctionnement NAND» dans la note supplémentaire). Chaque composant logique d’une NAND est reproduit avec une probabilité de réussite de 100 % en adoptant une valeur appropriée de α (voir Fig. 7 supplémentaire). QA dans NOR1 montre une forte probabilité de succès dans les opérations NOR et NAND, mais son point de rupture varie entre la théorie, l’analyse JSIM et les expériences.

forme 1

| Tendances des diagrammes d’état pour le processus NOR. Diagrammes de cas pour (une) jeh3 = 2,0 µA, (défenseur) jeh3 = 1,0 µA, (J) jeh3= 3,0 µA : (uneEt le DocteurEt le F(la théorie,)BEt le eEt le h) Analyse JSIM sans courant de bruit thermique, et (cEt le FEt le jeExpérience 10 mK.

Évaluation de la zone grise

Dans NOR2, la hauteur de barrière dans le potentiel d’énergie par qubit est réduite par rapport à celle dans NOR1 en raison de la réduction de jec. La figure supplémentaire 8 montre la distribution de fréquence pour chaque composant logique avec l’état actuel de (jeh1Et le jeh2 ) = (1.6, 1.6) [µA] et modifier jeh3Entre 0 et 9 A. À propos jeh3A partir de 2,8 µA, tous les composants logiques candidats apparaissent dans le NOR. Les figures 2a, b montrent des diagrammes de cas avec des images 2D et 3D dans jeh3A partir de 2,8 le point de décroissance expérimental est proche du point théorique. Notez que les limites de chaque composant logique changent radicalement autour de ce point. Le point de décroissance empirique de NOR2 est (jeh1 Et le jeh2Et le jeh3 ) = (1.6, 1.6, 2.8) [µA]. Pour plus de commodité, nous définissons la largeur transitoire entre deux régions logiques différentes comme la « région grise ». Il existe deux types de zones grises : le premier type est créé entre des zones adjacentes, telles que « 100 » – « 001 » et « 001 » – « 010 », et le second type se produit dans la même direction diagonale que l’échelle. Théoriquement, la largeur de l’échelle diminue de manière monotone avec le biais externe jeh3avant le point de dégénérescence. Plus tard, il augmente de façon monotone avec jeh3. Les premier et deuxième types peuvent être évalués à partir de quatre types de profils de lignes (L.14) et profils en L.5 et moi6 , respectivement (Fig. 2c et f). dans L .5 et moi6 , quatre composants logiques de NOR ont été identifiés. Les zones grises de type I dépendent du temps de recuit (June ) (Voir la figure supplémentaire 9 et la section « Fonction de zone grise de type I » de la note supplémentaire). En tant que tel June diminue, l’étendue de la zone grise s’élargit. avec une période plus longue June , l’effet du bruit peut être moyenné dans le temps. Cela contribue à la réduction de la zone grise, ce qui conduit à l’utilisation de l’effet de recuit quantique. Ces zones grises sont illustrées dans le cas de l’analyse JSIM avec courant de bruit thermique (voir Fig. 10 supplémentaire). Les figures 3a, b montrent les zones grises de type I évaluées respectivement dans les expériences et dans l’analyse JSIM. La largeur minimale de la zone grise varie entre les expériences et l’analyse JSIM. L’effet de l’écoulement dû aux cercles environnants apparaît différemment entre le JSIM et les expériences, ce qui se traduit par une différence dans la largeur minimale de la zone grise. Cependant, la prise en compte du pas équidistant courant dans l’évaluation de la zone grise contribue à supprimer l’effet de génération d’une composante logique secondaire. Les zones grises entre ‘100’ et ‘001’ et entre ‘001’ et ‘010’ ont tendance à être significatives. Ces tendances sont cohérentes avec le fait que la situation frontalière est susceptible de changer en raison de jeh3 Dans la figure 1, indiquant la facilité de changer l’état de l’énergie. En revanche, les valeurs sont petites dans les cas limites entre « 110 » et « 010 » et entre « 100 » et « 110 ». Ces tendances sont cohérentes avec le fait que les valeurs de jeh1 Et le jeh2Ne pas changer avec modification jeh3Dans la figure 1, indiquant la difficulté de changer l’état de l’énergie. Ces relations sont également confirmées quelle que soit la valeur de June(Voir la figure supplémentaire 9). Les figures 3c, d montrent une zone grise de type II avec deux orientations dans les expériences et l’analyse JSIM, respectivement. La première est une réponse monotone contre la valeur absolue de jeh3À partir du point de dégénérescence. Cette tendance est conforme aux prédictions de la théorie. La seconde est la zone grise qui s’étend un peu plus large avec des jeh3Avant le point de dissolution de l’augmentation jeh3au-delà du point de dissolution. Ces tendances sont cohérentes avec le résultat illustré à la Fig. 1, où l’occupation de la région ‘001’ est largement modifiée avec une diminution jeh3Par rapport au cas de l’augmentation jeh3. L’analyse JSIM reproduit également les mêmes tendances observées dans les expériences. Notez que les tendances changent pour un courant de bruit thermique supérieur à 2,5 pA/Hz dans l’analyse JSIM. En dessous de 2,0 pA/Hz, un piégeage à l’état minimum local se produit (voir la section « Analyse de la zone grise JSIM » dans les méthodes supplémentaires). La logique dans NOR et NAND peut être obtenue avec une grande précision en ajustant l’état actuel avec des valeurs α supérieures à 1 µA le long d’une direction diagonale à partir du point de décroissance, ce qui contribue à éviter la zone grise.

Figure 2
Figure 2

| Analyse des diagrammes d’état dans le processus NOR. (une) deux et (B) Diagrammes d’état 3D de NOR2 dans une expérience de 10 mK jeh3= 2,8 µA. Afin d’analyser la largeur de la frontière entre deux régions logiques (définie comme une zone grise), les profils de ligne de L.16représenté dans (une), est évalué. caractéristiques de ligne de (c) La1(Docteur) je suis2(e) je suis5Et le (F) je suis6.

figure 3
figure 3

| Analyse de la zone grise. Le premier type d’analyse de zone grise dans (une(Expérience 10 mK)BAnalyse JSIM. encart (une) représente une analyse théorique. Dans l’analyse JSIM pour (B), un courant de bruit thermique de 3,0 pA/√Hz est adopté. Le deuxième type d’analyse de la zone grise dans (c(Expérience 10 mK)DocteurAnalyse JSIM. NOR2 est utilisé.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La sonde spatiale Voyager 1 transmet à nouveau des données après que la NASA les a détectées à distance à 24 milliards de kilomètres – The Irish Times

Published

on

La sonde spatiale Voyager 1 transmet à nouveau des données après que la NASA les a détectées à distance à 24 milliards de kilomètres – The Irish Times

Le vaisseau spatial le plus éloigné de la Terre, Voyager 1, a recommencé à communiquer correctement avec la NASA après que les ingénieurs ont travaillé pendant des mois pour réparer à distance la sonde vieille de 46 ans.

Le Jet Propulsion Laboratory de la NASA, qui construit et exploite le vaisseau spatial robotique de l'agence, a déclaré en décembre que la sonde, située à plus de 24 milliards de kilomètres, envoyait un code absurde à la Terre.

Dans une mise à jour publiée lundi, le JPL a annoncé que l’équipe de la mission avait pu « après quelques investigations innovantes » obtenir des données utilisables sur la santé et l’état des systèmes d’ingénierie de Voyager 1. « La prochaine étape consiste à permettre au vaisseau spatial de commencer à apporter les données scientifiques. dos. » Elle a ajouté que malgré le défaut, Voyager 1 fonctionnait normalement depuis le début.

Lancé en 1977, Voyager 1 a été conçu dans le but principal d'effectuer des études rapprochées de Jupiter et de Saturne au cours d'une mission de cinq ans. Cependant, son voyage s'est poursuivi et le vaisseau spatial approche désormais d'un demi-siècle d'exploitation.

Voyager 1 a pénétré dans l'espace interstellaire en août 2012, ce qui en fait le premier objet fabriqué par l'homme à quitter le système solaire. Il roule actuellement à une vitesse de 60 821 km/h.

Le dernier problème était lié à l'un des trois ordinateurs à bord du vaisseau spatial, chargé de remplir les données scientifiques et techniques avant de les envoyer sur Terre. Incapable de réparer une puce cassée, l'équipe du JPL a décidé de déplacer le code endommagé ailleurs, une tâche difficile compte tenu de la technologie obsolète.

READ  L'équipage de l'Expédition 65 se prépare à l'arrivée du Cargo Dragon et à deux sorties extravéhiculaires

Les ordinateurs de Voyager 1 et de sa sœur Voyager 2 disposaient de moins de 70 kilo-octets de mémoire au total, soit l'équivalent d'une image informatique à basse résolution. Ils utilisent de vieilles bandes numériques pour enregistrer des données.

La réparation a été envoyée depuis la Terre le 18 avril, mais il a fallu deux jours pour évaluer si elle a réussi, car il faut environ 22 heures et demie pour que le signal radio atteigne Voyager 1 et 22 heures supplémentaires pour que la réponse revienne sur Terre. .

« Lorsque l'équipe de vol de la mission a reçu une réponse du vaisseau spatial le 20 avril, elle a constaté que la modification fonctionnait », a déclaré le JPL.

Parallèlement à son annonce, le JPL a publié une photo des membres de l'équipe de vol du Voyager applaudissant et applaudissant dans une salle de conférence après avoir reçu des données utilisables, avec des ordinateurs portables, des cahiers et des cookies sur la table devant eux.

L'astronaute canadien à la retraite Chris Hadfield, qui a participé à deux missions de navette spatiale et a servi comme commandant de la Station spatiale internationale, a comparé la mission du JPL à l'entretien longue distance d'une vieille voiture.

« Imaginez qu'une puce informatique se brise dans votre voiture en 1977. « Imaginez maintenant qu'elle se trouve dans l'espace interstellaire, à 25 milliards de kilomètres de là », a écrit Hadfield.

Voyager 1 et 2 ont fait de nombreuses découvertes scientifiques, notamment des enregistrements détaillés de Saturne et la révélation que Jupiter possède également des anneaux, ainsi qu'une activité volcanique active sur l'une de ses lunes, Io. Des sondes ont ensuite découvert 23 nouvelles lunes autour des planètes extérieures.

READ  Airbus construit la lune extrasolaire Ariel

Parce que leur trajectoire les éloigne du Soleil, les sondes du Voyager sont incapables d'utiliser des panneaux solaires et convertissent à la place la chaleur générée par la désintégration radioactive naturelle du plutonium en électricité pour alimenter les systèmes du vaisseau spatial.

La NASA espère continuer à collecter des données des deux vaisseaux spatiaux Voyager pendant encore plusieurs années, mais les ingénieurs s'attendent à ce que les sondes soient trop hors de portée pour communiquer d'ici une décennie environ, en fonction de la quantité d'énergie qu'elles peuvent générer. Voyager 2 est un peu en retard sur son jumeau et se déplace un peu plus lentement.

Dans environ 40 000 ans, les deux sondes passeront relativement près, en termes astronomiques, de deux étoiles. Voyager 1 s'approchera à moins de 1,7 années-lumière d'une étoile de la constellation de la Petite Ourse, tandis que Voyager 2 s'approchera à une distance similaire d'une étoile appelée Ross 248 dans la constellation d'Andromède. -Gardien

Continue Reading

science

Voyager 1 renvoie des données après que la NASA a réparé à distance une sonde vieille de 46 ans | espace

Published

on

Voyager 1 renvoie des données après que la NASA a réparé à distance une sonde vieille de 46 ans |  espace

Le vaisseau spatial le plus éloigné de la Terre, Voyager 1, a recommencé à communiquer correctement avec la NASA après que les ingénieurs ont travaillé pendant des mois pour réparer à distance la sonde vieille de 46 ans.

Le Jet Propulsion Laboratory (JPL) de la NASA, qui construit et exploite le vaisseau spatial robotique de l'agence, il a dit en décembre Que la sonde – à plus de 24 milliards de kilomètres de distance – envoyait un code absurde à la Terre.

dans Mise à jour publiée lundiLe JPL a annoncé que l'équipe de la mission a pu « après quelques investigations innovantes » obtenir des données utilisables sur la santé et l'état des systèmes d'ingénierie de Voyager 1. « La prochaine étape consiste à permettre au vaisseau spatial de recommencer à renvoyer des données scientifiques », a déclaré le JPL. Elle a ajouté que malgré le défaut, Voyager 1 fonctionnait normalement depuis le début.

Lancé en 1977, Voyager 1 a été conçu dans le but principal d'effectuer des études rapprochées de Jupiter et de Saturne au cours d'une mission de cinq ans. Cependant, son voyage s'est poursuivi et le vaisseau spatial approche désormais d'un demi-siècle d'exploitation.

Voyager 1 a pénétré dans l'espace interstellaire en août 2012, ce qui en fait le premier objet fabriqué par l'homme à quitter le système solaire. Il roule actuellement à 37 800 mph (60 821 km/h).

Le dernier problème était lié à l'un des trois ordinateurs à bord du vaisseau spatial, chargé de remplir les données scientifiques et techniques avant de les envoyer sur Terre. Incapable de réparer une puce cassée, l'équipe du JPL a décidé de déplacer le code endommagé ailleurs, une tâche difficile compte tenu de la technologie obsolète.

READ  L'atterrisseur lunaire Doomed Peregrine prend un autre selfie dans l'espace

Les ordinateurs de Voyager 1 et de sa sœur Voyager 2 disposaient de moins de 70 kilo-octets de mémoire au total, soit l'équivalent d'une image informatique à basse résolution. Ils utilisent de vieilles bandes numériques pour enregistrer des données.

Le correctif a été envoyé depuis la Terre le 18 avril, mais il a fallu deux jours pour évaluer s'il a réussi, car il faut environ 22 heures et demie pour qu'un signal radio atteigne Voyager 1 et encore 22 heures et demie pour la réponse à retourner dans l'espace. Atterrir. « Lorsque l'équipe de vol de la mission a reçu une réponse du vaisseau spatial le 20 avril, elle a constaté que la modification fonctionnait », a déclaré le JPL.

Voyager 1 et 2 ont fait de nombreuses découvertes scientifiques, notamment des enregistrements détaillés de Saturne et la révélation que Jupiter possède également des anneaux, ainsi qu'une activité volcanique active sur l'une de ses lunes, Io. Des sondes ont ensuite découvert 23 nouvelles lunes autour des planètes extérieures.

Parce que leur trajectoire les éloigne du Soleil, les sondes du Voyager sont incapables d'utiliser des panneaux solaires et convertissent à la place la chaleur générée par la désintégration radioactive naturelle du plutonium en électricité pour alimenter les systèmes du vaisseau spatial.

Dans environ 40 000 ans, les deux sondes passeront relativement près, en termes astronomiques, de deux étoiles. Voyager 1 s'approchera à moins de 1,7 années-lumière d'une étoile de la constellation de la Petite Ourse, tandis que Voyager 2 s'approchera à une distance similaire d'une étoile appelée Ross 248 dans la constellation d'Andromède.

Continue Reading

science

La mesure la plus précise jamais réalisée nous rapproche de la véritable masse de la particule « fantôme ».

Published

on

La mesure la plus précise jamais réalisée nous rapproche de la véritable masse de la particule « fantôme ».

La masse au repos des neutrinos fantômes est l’une des quantités les plus recherchées en physique des particules et les scientifiques sont sur le point de la localiser, grâce à une nouvelle expérience menée par des chercheurs de l’Institut Max Planck de physique nucléaire en Allemagne.

Si la masse des neutrinos est connue, cela pourrait ouvrir la porte à une physique au-delà du modèle standard de la physique des particules, qui décrit toutes les forces et particules élémentaires connues de l’univers.

Dire que les neutrinos sont étranges est un euphémisme. Autrefois suggéré qu'il n'y avait pas de masse du tout, il est désormais clair que cette particule à peine existante est en réalité composée de trois types en un, avec des identités oscillant dans un étrange flou quantique alors qu'elle se précipite dans l'espace. Cette faible identité signifie la masse, qui Il se présente sous différentes formesétalé sur l'apparence changeante du neutrino.

Parce qu’ils sont si légers et étranges, les neutrinos ne respectent peut-être pas les mêmes règles que les autres particules. L’ajout précis d’un échantillon de leurs masses incroyablement petites pourrait aider à confirmer et à exclure de nouveaux modèles en physique des particules.

Cependant, les physiciens ne peuvent pas peser des groupes de neutrinos stationnaires comme des raisins sur une balance. Au lieu de, Ils peuvent juste Confirmer l'existence Ces particules subatomiques en examinant leurs interactions avec d'autres particules, ou En mesurant les produits Leur décadence. C'est peut-être juste la particule Présent pour le plus bref instant Mais à ce moment-là, il laisse sa marque, ou une trace, à partir de laquelle les physiciens peuvent déduire la masse.

READ  NASA Persevere Rover partage les meilleures photos de Mars de 2021

Cependant, sans charge et pratiquement sans force gravitationnelle, les neutrinos n’exercent que les forces les plus faibles sur les autres particules. En fait, des milliards de neutrinos traversent votre corps en ce moment, la plupart provenant du Soleil, mais… Ils interagissent rarement Avec nous.

Cependant, ce n’est pas parce qu’ils ont peu d’effet sur les autres particules subatomiques que les neutrinos ne constituent pas une partie essentielle de la matière. qu'ils Les molécules les plus abondantes Qui ont une masse dans l'univers, et savoir ce qui donne à ces différences entre les neutrinos des masses si petites, non nulles, peut aider les physiciens à résoudre ou à comprendre certaines des divergences du modèle standard que présentent les neutrinos dans la façon dont ils oscillent.

Les physiciens améliorent régulièrement leurs meilleures estimations des limites supérieures des masses individuelles et collectives des neutrinos en utilisant différentes méthodes. La mesure la plus précise à ce jour d'une « saveur » appelée neutrino électronique a révélé qu'elle ne pouvait pas dépasser 0,8 MeV. Traduisant cela en masse en termes de 1 kilogramme (ou 2,2 livres), cela équivaut au poids de quatre raisins secs par rapport au soleil.

L'estimation la plus récente a été déterminée en février 2022 par l'expérience Karlsruhe Tritium Neutrino (Catherine) en Allemagne, a été déduite de la pulvérisation d'électrons et de neutrinos émise comme une forme super-lourde de désintégration de l'hydrogène.

Une autre façon d'obtenir la masse d'un neutrino, aussi légère soit-elle, consiste à étudier ce qui se passe lorsque le noyau atomique de l'isotope artificiel holmium-163 absorbe un électron de sa coque interne. En conséquence, un proton se transforme en neutron, du dysprosium-163 est produit et un neutrino est libéré.

READ  Mécanisme de la méthyltransférase médiée par METTL8 | Alerte Yorick !

Les physiciens peuvent alors mesurer l'énergie totale libérée lors de cette désintégration à l'aide d'un type de calorimètre et en déduire la masse du neutrino « manquant » qui a volé dans l'éther en se basant sur la masse totale de l'atome et la célèbre équation d'Einstein, E = mc2.2Où masse et énergie sont égales.

Ceci est calculé comme ce qu'on appelle valeur x: Une différence d'énergie qui peut se traduire par la masse « perdue » de la somme des particules atomiques après une réaction de désintégration. Cette différence de masse est interprétée comme un neutrino.

Cependant, les atomes d'or dans lesquels l'holmium-163 est présent peuvent affecter cette réaction de désintégration, Il explique Christoph Schweiger, physicien à l'Institut Max Planck de physique nucléaire et auteur principal de la nouvelle étude.

« Il est donc important de mesurer la valeur Q le plus précisément possible à l'aide d'une méthode alternative et de la comparer à la valeur déterminée par calorimétrie afin de détecter d'éventuelles sources d'erreur systématiques. » Il dit.

Pour ce faire, Schweiger et ses collègues ont mis en place une expérience combinant cinq soi-disant Pièges à écrireempilés les uns sur les autres à l'intérieur d'un aimant supraconducteur placé sous vide et immergé dans de l'hélium liquide à environ 4 degrés Kelvin (-269,1 degrés Celsius ou -452,5 degrés Fahrenheit).

PENTATRAP se compose de cinq pièges à écriture empilés les uns sur les autres, comme le montre la tour centrale jaune. (MPI pour la physique nucléaire)

Tous ces efforts contribuent à protéger l’équipement afin qu’il soit suffisamment sensible pour capturer les particules dans les pièges de Penning et mesurer d’infimes différences d’énergie entre les ions chargés d’holmium-163 et de dysprosium-163.

« Avec un Airbus A-380 doté d'une charge utile maximale, vous pouvez utiliser cette sensibilité pour déterminer si une seule goutte d'eau s'est posée dessus », a déclaré Schweiger. Il dit.

READ  Explorer la Terre depuis l'espace : ville-île-nation de Singapour [Video]

En fait, les chercheurs ont mesuré les ions holmium-163 entrants et les ions dysprosium-163 résultants pour arriver à une valeur Q de 2863,2 ± 0,6 eVC.-2qui est 50 fois plus précise que la tension précédente, qui atteignait une valeur de 2833 ± 34 V C.-2.

L’utilisation d’une valeur Q plus précise et mesurée de manière indépendante en conjonction avec d’autres résultats expérimentaux « est essentielle pour évaluer les incertitudes systématiques dans la détermination de la masse des neutrinos », expliquent Schweiger et ses collègues. Écrire dans leur article publié.

Bien qu'il ne s'agisse que d'une pièce du puzzle, une résolution améliorée dans des mesures telles que Q peut être combinée à un large éventail de méthodes pour comprendre pourquoi les fantômes étranges et chatoyants du monde des particules se comportent comme des esprits frappeurs.

L'étude a été publiée dans Physique naturelle.

Continue Reading

Trending

Copyright © 2023