Connect with us

science

Comment se déplace le squelette ? Nouvelle méthode de suivi pour déterminer la cinétique squelettique chez les rongeurs en mouvement libre – ScienceDaily

Published

on

Comment pouvons-nous mesurer le mouvement du squelette d’un animal à fourrure lorsqu’il se déplace dans son environnement ? Des chercheurs de l’Institut Max Planck pour la neurobiologie du comportement ont développé une nouvelle méthode pour mesurer le mouvement du squelette chez les rongeurs en mouvement libre avec un nouveau niveau de précision et de détail. Il est basé sur la construction d’un modèle structurel qui calcule le mouvement d’une articulation osseuse à l’aide de principes anatomiques de base, tels que les limites de rotation de l’articulation et les vitesses auxquelles les objets peuvent se déplacer. Cette approche a été publiée dans Les voies de la nature Il ouvre une nouvelle capacité à lire comment les animaux interagissent avec leur environnement et, à mesure que le cerveau et la moelle épinière entraînent des mouvements, commencent à déchiffrer la relation entre l’activité neuronale et un comportement complexe tel que la prise de décision.

Avez-vous déjà pensé à la façon dont votre squelette bouge au cours de votre journée ? Lorsque nous réfléchissons à cette question, les images radiographiques nous viennent immédiatement à l’esprit. Mais comment mesurer le mouvement du squelette sans utiliser de rayons X chez un animal qui court ou saute et interagit avec son environnement ? Et pourquoi est-ce important? L’étude d’un animal se déplaçant librement donne un aperçu inégalé de la façon dont les animaux se comportent et prennent des décisions, par exemple lorsqu’ils évitent la prédation, trouvent des partenaires et élèvent leurs petits. Alors que de nombreuses études ont mesuré le comportement des animaux, les études mesurant les mécanismes de leur mouvement manquent. Mais comme l’activité dans le système nerveux central conduit finalement à des décisions prises par le biais de mouvements corporels, il est essentiel de mesurer ces mécanismes et de les relier à l’activité neuronale pour mieux comprendre le fonctionnement du cerveau.

READ  La famille des protéines montre comment la vie s'adapte à l'oxygène

Sans appareil à rayons X, l’analyse des mouvements osseux individuels est très difficile car l’obstruction de la fourrure, de la peau et des tissus mous rend difficile l’obtention d’une mesure du mouvement squelettique. Récemment, de nombreuses méthodes avancées d’apprentissage automatique ont été capables de mesurer avec précision la posture d’un animal et même les changements dans les expressions faciales d’un animal ; Cependant, aucune des technologies actuelles n’a jusqu’à présent été en mesure de suivre les changements dans la position des os et le mouvement des articulations sous la surface visible du corps.

Des chercheurs du Département du comportement et de l’organisation cérébrale de l’Institut Max Planck pour la neurobiologie du comportement à Bonn, dirigé par Jason Kerr, ont mis au point une méthode basée sur la vidéographie pour suivre les squelettes 3D à la résolution des articulations individuelles chez les animaux non enchaînés pendant qu’ils sont dans. interagir avec leur environnement. elles ou ils Modèle anatomiquement restreint (ACM) Il est basé sur un squelette anatomiquement fondé qui déduit la mobilité squelettique d’un animal lorsqu’il se déplace librement. Avec ces données, il a été possible de mesurer le fonctionnement interne du squelette, moment par moment, alors que les animaux sautaient, marchaient, s’étiraient et couraient. Cette nouvelle approche peut être appliquée à de nombreuses espèces à fourrure telles que les souris et les rats de tailles et d’âges variés. Pour s’assurer que les données étaient correctes, les chercheurs ont travaillé avec des collègues de l’Institut Max Planck pour la cybernétique biologique et de l’Institut Max Planck pour les systèmes intelligents à Tübingen en utilisant l’IRM animale pour comparer le modèle ACM au squelette réel. dit Jason Kerr, qui a dirigé l’étude avec Jacob McKee de Tübingen. L’une des prochaines étapes consiste à combiner cette approche avec des enregistrements simultanés de neurones dans le cerveau à l’aide de microscopes miniatures multiphotons montés sur la tête développés par des chercheurs de l’Institut Max Planck de neurobiologie comportementale. Cela permettra à l’activité neuronale d’être liée exactement au comportement réel pour en savoir plus sur la façon dont le cerveau contrôle même un comportement complexe.

READ  La NASA publiera aujourd'hui de nouvelles images du télescope spatial James Webb en cours de mise à jour. ici quand on regarde.

Les chercheurs appliqueront également leur nouvelle méthode pour mesurer la locomotion chez d’autres espèces animales dans des environnements plus naturels tout en simultanément chez plusieurs animaux en interaction. « Avec notre nouvelle méthode, d’une part, nous allons mieux comprendre comment les animaux interagissent avec leur environnement, et d’autre part, nous espérons acquérir des connaissances sur la façon dont les animaux interagissent les uns avec les autres. » dit Jason Kerr.

Origine de l’histoire :

Matériaux Introduction de Max Planck Gesellschaft. Remarque : Le contenu peut être modifié en fonction du style et de la longueur.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Published

on

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Les chercheurs suggèrent que le Tyrannosaurus rex était peut-être 70 % plus lourd qu’on ne le pensait auparavant et 25 % plus long.

Le plus grand T. rex jamais trouvé vivant pourrait être beaucoup plus grand que le plus grand spécimen actuellement connu, puisqu’il pèse environ 15 tonnes au lieu de 8,8 tonnes et mesure 15 mètres de long au lieu de 12 mètres, selon l’étude.

De nombreux dinosaures plus grands appartenant à divers groupes ont été identifiés à partir d’un seul bon spécimen fossile.

Il est donc impossible de savoir si cet animal est un grand ou un petit exemplaire de cette espèce.

Les chercheurs soulignent que déterminer quel dinosaure était le plus grand, sur la base d’une poignée de fossiles, n’a pas beaucoup de sens.

Dans la nouvelle étude, le Dr Jordan Malone du Musée canadien de la nature à Ottawa, au Canada, et le Dr David Hone de l’Université Queen Mary de Londres, ont utilisé la modélisation informatique pour évaluer un groupe de dinosaures T. rex.

Ils ont pris en compte des facteurs tels que la taille de la population, le taux de croissance, la durée de vie moyenne et le caractère incomplet des archives fossiles.

« Notre étude suggère que pour les grands animaux fossiles tels que le T. rex, nous n’avons aucune idée, d’après les archives fossiles, de la taille absolue qu’ils ont pu atteindre », a déclaré le Dr Malone.

« C’est amusant de penser à un T. rex de 15 tonnes, mais les implications sont également intéressantes d’un point de vue biomécanique ou écologique. »

READ  Mise en évidence des dimensions artificielles

Le Dr Hohn a déclaré : « Il est important de souligner qu’il ne s’agit pas vraiment du T. rex, qui constitue la base de notre étude, mais que cette question s’applique à tous les dinosaures et à de nombreuses autres espèces fossiles.

« Se disputer sur « qu’est-ce qui est le plus gros ? » en se basant sur quelques squelettes n’a pas vraiment de sens. »

Le T. rex a été choisi pour le modèle car bon nombre de ses détails étaient déjà bien appréciés.

Le modèle est basé sur des modèles de crocodiles vivants, choisis en raison de leur grande taille et de leur relation étroite avec les dinosaures.

Les chercheurs ont découvert que les plus grands fossiles connus de T. rex se situent probablement dans le 99e centile, soit le 1 pour cent supérieur de la taille du corps.

Cependant, ils soulignent que pour trouver un animal parmi les 99,99 pour cent (un tyrannosaure sur dix mille), les scientifiques devraient fouiller des fossiles au rythme actuel pendant encore 1 000 ans.

Les estimations de taille sont basées sur un modèle, mais la découverte de géants d’espèces modernes suggère qu’il devait encore y avoir des dinosaures plus grands.

« Certains des os et morceaux isolés indiquent clairement des individus plus gros que les squelettes dont nous disposons actuellement », a déclaré le Dr Hoon.

Les résultats ont été publiés dans la revue Ecology and Evolution.

Continue Reading

science

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Published

on

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Un scientifique du Lawrence Berkeley National Laboratory travaille sur un dispositif de séparation lors d’une expérience. Crédit image : Laboratoire national Lawrence Berkeley

Une équipe de scientifiques et de chercheurs du Lawrence Berkeley National Laboratory en Californie a récemment annoncé une réalisation révolutionnaire : la création du Livemorium, ou élément 116, à l’aide d’un faisceau de particules de titane.

C’est la première fois qu’un hépatique est fabriqué de cette manière, rapprochant les chercheurs de l’insaisissable « îlot de stabilité », où les éléments très lourds sont censés avoir une durée de vie plus longue, ce qui les rend plus faciles à étudier. Plus important encore, c’est la première fois qu’un objet extrêmement lourd est fabriqué de cette manière par des humains.

Rainer Kröcken, directeur des sciences nucléaires au Berkeley Lab, a exprimé son optimisme quant à la découverte, soulignant la nature collaborative de l’expérience. Il a déclaré que la production de l’élément 120, la prochaine cible, prendrait beaucoup plus de temps mais semblait désormais possible. Annoncé lors de la conférence Nuclear Structure 2024, l’article sera bientôt disponible sur le référentiel de prépublications arXiv et sera soumis à la revue Physical Review Letters.

Utilisation innovante d’une poutre en titane pour créer l’élément 116
Dans leur expérience, les scientifiques ont utilisé un faisceau de titane-50, un isotope spécifique, pour générer du Livemorium, ce qui en fait l’élément le plus lourd créé à ce jour au laboratoire de Berkeley. Ce laboratoire a une riche histoire de découverte d’éléments, qui a contribué à l’identification de 16 éléments allant du technétium (43) au seaborgium (106).

READ  Jupiter réserve une surprise choquante pour Halloween ! Un « visage » effrayant capturé par la mission Juno de la NASA

Jacqueline Gates, qui a dirigé le dernier effort, a exprimé sa confiance dans les résultats, notant que les chances que les résultats soient une anomalie statistique sont très faibles. Le processus impliquait de chauffer le titane à environ 3 000 °F (1 649 °C) jusqu’à ce qu’il se vaporise. L’équipe a ensuite bombardé le titane vaporisé avec des micro-ondes, en enlevant 22 électrons et en préparant les ions pour l’accélération dans un cyclotron de 88 pouces au laboratoire de Berkeley.

Les ions de titane accélérés sont dirigés vers une cible de plutonium, des milliards d’ions frappant la cible chaque seconde. Ce bombardement intense a finalement créé deux atomes de Livermorium sur une période de 22 jours. L’utilisation du titane à cette fin représente une nouvelle technologie pour synthétiser des éléments plus lourds, car les éléments précédents de cette gamme, de 114 à 118, avaient été synthétisés à l’aide d’un faisceau de calcium 48.

Jennifer Burr, physicienne nucléaire au groupe des éléments lourds du Berkeley Lab, a souligné l’importance de cette méthode. La production de l’élément 116 à partir de titane valide cette nouvelle approche, ouvrant la voie à de futures expériences visant à produire des éléments plus lourds, comme l’élément 120.

Trouver l’article 120
Le succès de la création de l’élément 116 a ouvert la voie au prochain objectif ambitieux de l’équipe : créer l’élément 120. S’il est atteint, l’élément 120 sera l’atome le plus lourd jamais créé et fera partie de « l’îlot de stabilité », un groupe théorique d’éléments super-lourds de qui devrait être plus long que ceux découverts jusqu’à présent.

READ  La NASA publiera aujourd'hui de nouvelles images du télescope spatial James Webb en cours de mise à jour. ici quand on regarde.

Le laboratoire prévoit de commencer à tenter de créer l’élément 120 en 2025. Le processus devrait prendre plusieurs années, reflétant la complexité et les défis inhérents à cette recherche de pointe. Les physiciens explorent les limites du tableau périodique, s’efforçant de repousser les limites de la connaissance et de la compréhension humaines en explorant les limites de la stabilité atomique.

Cette réalisation majeure démontre non seulement la créativité des scientifiques du Berkeley Lab, mais ouvre également la voie à de futures découvertes dans le domaine des éléments super-lourds, qui pourraient ouvrir la voie à de nouvelles connaissances sur la nature fondamentale de la matière.

Retrouvez-nous sur YouTube

Participer

Continue Reading

science

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

Published

on

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

La directrice de l’Institut des sciences spatiales et cosmiques, la Dre Jennifer Lutz, a accepté la recommandation principale du groupe de travail sur les initiatives exoplanétaires stratégiques et a décidé de procéder à une étude à grande échelle des exoplanètes naines rocheuses de type M.

Le programme utilisera environ 500 heures du temps discrétionnaire du directeur sur le télescope spatial James Webb pour rechercher l’atmosphère de plus d’une douzaine de systèmes proches.

Près de 250 observations ultraviolettes en orbite avec le télescope spatial Hubble seront utilisées pour déterminer l’activité des étoiles hôtes. Les observations seront effectuées par une équipe de direction du Space Science Institute dirigée par le Dr Nestor Espinosa et soutenue par le Dr Hannah Diamond Lowe en tant qu’équipe adjointe.

L’Institut des sciences spatiales et cosmiques emploie également un comité consultatif scientifique externe pour donner des conseils sur tous les aspects du programme, y compris la sélection des cibles, la vérification des données et les interactions communautaires équitables. Les membres du comité consultatif scientifique seront représentatifs de la communauté exoplanétaire au sens large, couvrant un large éventail d’affiliations institutionnelles et d’étapes de carrière.

Le Space Science Institute annoncera bientôt la possibilité de soumettre des candidatures, y compris des auto-nominations. La contribution de la communauté sera sollicitée sur la liste des cibles ; Les plans d’observation seront publiés bien avant la date limite de GWebb IV.

Rapport du groupe de travail sur les initiatives exoplanétaires stratégiques avec le télescope spatial Hubble et le télescope spatial James Webb

READ  La famille des protéines montre comment la vie s'adapte à l'oxygène

Astrobiologie

Membre de l’Explorers Club, ancien gestionnaire de charge utile de la Station spatiale de la NASA/biologiste spatial, homme de plein air, journaliste, ancien grimpeur, synesthésie, mélange de Na’vi, Jedi, Freeman et bouddhiste, langue des signes américaine, camp de base de l’île Devon et vétéran de l’Everest, (il /lui) 🖖🏻

Continue Reading

Trending

Copyright © 2023