Connect with us

science

Des chercheurs ont découvert un nouveau mécanisme de liaison entre petites et géantes molécules

Published

on

Des chercheurs ont découvert un nouveau mécanisme de liaison entre petites et géantes molécules

Ouvrez la chambre à vide. Le contrôle du champ électrique et la première lentille du microscope ionique sont situés au centre de la chambre. Crédit : Nicolas Zuber

Des chercheurs du Cinquième Institut de physique de l’Université de Stuttgart ont étudié un nouveau mécanisme de liaison qui forme une molécule entre une petite particule chargée et l’atome géant de Rydberg (moléculairement parlant). Les scientifiques ont observé la molécule à l’aide d’un microscope ionique fait maison. Les résultats ont été publiés dans tempérer la nature.


Lorsque des molécules simples telles que des atomes et des ions se lient, des molécules apparaissent. De telles liaisons peuvent apparaître entre deux particules si, par exemple, elles ont des charges électriques opposées et sont donc capables de s’attirer. La molécule observée à l’Université de Stuttgart présente une particularité : elle est constituée d’un ion chargé positivement et d’un atome neutre dans l’état dit de Rydberg. Les atomes de Rydberg ont grossi mille fois par rapport aux atomes typiques. Comme la charge de l’ion déforme l’atome de Rydberg de manière très spécifique, la liaison apparaît entre les deux particules.

Pour étudier et étudier la molécule, les chercheurs ont préparé un nuage de rubidium ultra-froid, qui s’était refroidi près du zéro absolu à -273 degrés Celsius. seulement dans ce basses températures C’est la force entre les particules suffisamment forte pour former la molécule. Dans ces ensembles atomiques ultrafroids, l’ionisation d’atomes simples avec des champs laser est le premier élément constitutif de la molécule, l’ion.

Des lasers supplémentaires excitent un deuxième atome dans le cas de Rydberg. Le champ électrique de l’ion déforme cet atome géant. Fait intéressant, la déformation peut être attractive ou répulsive en fonction de la distance entre les deux particules, permettant aux partenaires de liaison d’osciller autour de la distance d’équilibre et de stimuler la liaison moléculaire. La distance entre les extrémités de la cravate est exceptionnellement grande et représente environ un dixième de l’épaisseur d’un cheveu humain.

Microscopie à l’aide de champs électriques

Un microscope ionique spécial a rendu cette observation possible. Il a été développé, construit et commandé par des chercheurs du cinquième institut de physique en étroite collaboration avec les ateliers de l’université de Stuttgart. Contrairement aux microscopes à lumière typiques, l’appareil affecte la dynamique des particules chargées à l’aide de champs électriques pour agrandir et imager les particules sur le détecteur. « Nous pouvons imager la molécule flottante et ses composants avec ce microscope et observer et étudier l’alignement de cette molécule dans notre expérience », explique Nicholas Zuber, PhD. Étudiant au Cinquième Institut de Physique.

Dans la prochaine étape, les chercheurs veulent étudier les processus dynamiques au sein de cette molécule inhabituelle. avec l’aide de microscope, il devrait être possible d’étudier les vibrations et la rotation de la molécule. En raison de sa taille énorme et de la faible liaison de la molécule, les processus dynamiques sont plus lents que d’habitude molécules. Le groupe de recherche espère acquérir de nouvelles connaissances plus détaillées sur la structure interne de la molécule.


Liaison atomique faible, théorisée il y a 14 ans, observée pour la première fois


Plus d’information:
Nicholas Zuber et al., Observant la liaison moléculaire entre les ions et les atomes de Rydberg, tempérer la nature (2022). DOI : 10.1038 / s41586-022-04577-5

Introduction de
Université de Stuttgart

la citation: Des chercheurs découvrent un nouveau mécanisme de liaison entre les particules petites et géantes (2022, 20 mai) Extrait le 20 mai 2022 de https://phys.org/news/2022-05-mechanism-small-gigantic-particles.html

Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.

READ  Des fossiles d'une nouvelle espèce de dinosaure cuirassé découverts dans l'est de la Chine
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Published

on

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Les chercheurs suggèrent que le Tyrannosaurus rex était peut-être 70 % plus lourd qu’on ne le pensait auparavant et 25 % plus long.

Le plus grand T. rex jamais trouvé vivant pourrait être beaucoup plus grand que le plus grand spécimen actuellement connu, puisqu’il pèse environ 15 tonnes au lieu de 8,8 tonnes et mesure 15 mètres de long au lieu de 12 mètres, selon l’étude.

De nombreux dinosaures plus grands appartenant à divers groupes ont été identifiés à partir d’un seul bon spécimen fossile.

Il est donc impossible de savoir si cet animal est un grand ou un petit exemplaire de cette espèce.

Les chercheurs soulignent que déterminer quel dinosaure était le plus grand, sur la base d’une poignée de fossiles, n’a pas beaucoup de sens.

Dans la nouvelle étude, le Dr Jordan Malone du Musée canadien de la nature à Ottawa, au Canada, et le Dr David Hone de l’Université Queen Mary de Londres, ont utilisé la modélisation informatique pour évaluer un groupe de dinosaures T. rex.

Ils ont pris en compte des facteurs tels que la taille de la population, le taux de croissance, la durée de vie moyenne et le caractère incomplet des archives fossiles.

« Notre étude suggère que pour les grands animaux fossiles tels que le T. rex, nous n’avons aucune idée, d’après les archives fossiles, de la taille absolue qu’ils ont pu atteindre », a déclaré le Dr Malone.

« C’est amusant de penser à un T. rex de 15 tonnes, mais les implications sont également intéressantes d’un point de vue biomécanique ou écologique. »

READ  Regardez les faits saillants de la mission SpaceX pour déployer un satellite espion

Le Dr Hohn a déclaré : « Il est important de souligner qu’il ne s’agit pas vraiment du T. rex, qui constitue la base de notre étude, mais que cette question s’applique à tous les dinosaures et à de nombreuses autres espèces fossiles.

« Se disputer sur « qu’est-ce qui est le plus gros ? » en se basant sur quelques squelettes n’a pas vraiment de sens. »

Le T. rex a été choisi pour le modèle car bon nombre de ses détails étaient déjà bien appréciés.

Le modèle est basé sur des modèles de crocodiles vivants, choisis en raison de leur grande taille et de leur relation étroite avec les dinosaures.

Les chercheurs ont découvert que les plus grands fossiles connus de T. rex se situent probablement dans le 99e centile, soit le 1 pour cent supérieur de la taille du corps.

Cependant, ils soulignent que pour trouver un animal parmi les 99,99 pour cent (un tyrannosaure sur dix mille), les scientifiques devraient fouiller des fossiles au rythme actuel pendant encore 1 000 ans.

Les estimations de taille sont basées sur un modèle, mais la découverte de géants d’espèces modernes suggère qu’il devait encore y avoir des dinosaures plus grands.

« Certains des os et morceaux isolés indiquent clairement des individus plus gros que les squelettes dont nous disposons actuellement », a déclaré le Dr Hoon.

Les résultats ont été publiés dans la revue Ecology and Evolution.

Continue Reading

science

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Published

on

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Un scientifique du Lawrence Berkeley National Laboratory travaille sur un dispositif de séparation lors d’une expérience. Crédit image : Laboratoire national Lawrence Berkeley

Une équipe de scientifiques et de chercheurs du Lawrence Berkeley National Laboratory en Californie a récemment annoncé une réalisation révolutionnaire : la création du Livemorium, ou élément 116, à l’aide d’un faisceau de particules de titane.

C’est la première fois qu’un hépatique est fabriqué de cette manière, rapprochant les chercheurs de l’insaisissable « îlot de stabilité », où les éléments très lourds sont censés avoir une durée de vie plus longue, ce qui les rend plus faciles à étudier. Plus important encore, c’est la première fois qu’un objet extrêmement lourd est fabriqué de cette manière par des humains.

Rainer Kröcken, directeur des sciences nucléaires au Berkeley Lab, a exprimé son optimisme quant à la découverte, soulignant la nature collaborative de l’expérience. Il a déclaré que la production de l’élément 120, la prochaine cible, prendrait beaucoup plus de temps mais semblait désormais possible. Annoncé lors de la conférence Nuclear Structure 2024, l’article sera bientôt disponible sur le référentiel de prépublications arXiv et sera soumis à la revue Physical Review Letters.

Utilisation innovante d’une poutre en titane pour créer l’élément 116
Dans leur expérience, les scientifiques ont utilisé un faisceau de titane-50, un isotope spécifique, pour générer du Livemorium, ce qui en fait l’élément le plus lourd créé à ce jour au laboratoire de Berkeley. Ce laboratoire a une riche histoire de découverte d’éléments, qui a contribué à l’identification de 16 éléments allant du technétium (43) au seaborgium (106).

READ  La mission Juno de la NASA capture de superbes images de la lune volcanique de Jupiter

Jacqueline Gates, qui a dirigé le dernier effort, a exprimé sa confiance dans les résultats, notant que les chances que les résultats soient une anomalie statistique sont très faibles. Le processus impliquait de chauffer le titane à environ 3 000 °F (1 649 °C) jusqu’à ce qu’il se vaporise. L’équipe a ensuite bombardé le titane vaporisé avec des micro-ondes, en enlevant 22 électrons et en préparant les ions pour l’accélération dans un cyclotron de 88 pouces au laboratoire de Berkeley.

Les ions de titane accélérés sont dirigés vers une cible de plutonium, des milliards d’ions frappant la cible chaque seconde. Ce bombardement intense a finalement créé deux atomes de Livermorium sur une période de 22 jours. L’utilisation du titane à cette fin représente une nouvelle technologie pour synthétiser des éléments plus lourds, car les éléments précédents de cette gamme, de 114 à 118, avaient été synthétisés à l’aide d’un faisceau de calcium 48.

Jennifer Burr, physicienne nucléaire au groupe des éléments lourds du Berkeley Lab, a souligné l’importance de cette méthode. La production de l’élément 116 à partir de titane valide cette nouvelle approche, ouvrant la voie à de futures expériences visant à produire des éléments plus lourds, comme l’élément 120.

Trouver l’article 120
Le succès de la création de l’élément 116 a ouvert la voie au prochain objectif ambitieux de l’équipe : créer l’élément 120. S’il est atteint, l’élément 120 sera l’atome le plus lourd jamais créé et fera partie de « l’îlot de stabilité », un groupe théorique d’éléments super-lourds de qui devrait être plus long que ceux découverts jusqu’à présent.

READ  La sonde Curiosity Mars de la NASA explore un paysage en mutation - Visite vidéo de la montagne de Mars

Le laboratoire prévoit de commencer à tenter de créer l’élément 120 en 2025. Le processus devrait prendre plusieurs années, reflétant la complexité et les défis inhérents à cette recherche de pointe. Les physiciens explorent les limites du tableau périodique, s’efforçant de repousser les limites de la connaissance et de la compréhension humaines en explorant les limites de la stabilité atomique.

Cette réalisation majeure démontre non seulement la créativité des scientifiques du Berkeley Lab, mais ouvre également la voie à de futures découvertes dans le domaine des éléments super-lourds, qui pourraient ouvrir la voie à de nouvelles connaissances sur la nature fondamentale de la matière.

Retrouvez-nous sur YouTube

Participer

Continue Reading

science

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

Published

on

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

La directrice de l’Institut des sciences spatiales et cosmiques, la Dre Jennifer Lutz, a accepté la recommandation principale du groupe de travail sur les initiatives exoplanétaires stratégiques et a décidé de procéder à une étude à grande échelle des exoplanètes naines rocheuses de type M.

Le programme utilisera environ 500 heures du temps discrétionnaire du directeur sur le télescope spatial James Webb pour rechercher l’atmosphère de plus d’une douzaine de systèmes proches.

Près de 250 observations ultraviolettes en orbite avec le télescope spatial Hubble seront utilisées pour déterminer l’activité des étoiles hôtes. Les observations seront effectuées par une équipe de direction du Space Science Institute dirigée par le Dr Nestor Espinosa et soutenue par le Dr Hannah Diamond Lowe en tant qu’équipe adjointe.

L’Institut des sciences spatiales et cosmiques emploie également un comité consultatif scientifique externe pour donner des conseils sur tous les aspects du programme, y compris la sélection des cibles, la vérification des données et les interactions communautaires équitables. Les membres du comité consultatif scientifique seront représentatifs de la communauté exoplanétaire au sens large, couvrant un large éventail d’affiliations institutionnelles et d’étapes de carrière.

Le Space Science Institute annoncera bientôt la possibilité de soumettre des candidatures, y compris des auto-nominations. La contribution de la communauté sera sollicitée sur la liste des cibles ; Les plans d’observation seront publiés bien avant la date limite de GWebb IV.

Rapport du groupe de travail sur les initiatives exoplanétaires stratégiques avec le télescope spatial Hubble et le télescope spatial James Webb

READ  La mission Juno de la NASA capture de superbes images de la lune volcanique de Jupiter

Astrobiologie

Membre de l’Explorers Club, ancien gestionnaire de charge utile de la Station spatiale de la NASA/biologiste spatial, homme de plein air, journaliste, ancien grimpeur, synesthésie, mélange de Na’vi, Jedi, Freeman et bouddhiste, langue des signes américaine, camp de base de l’île Devon et vétéran de l’Everest, (il /lui) 🖖🏻

Continue Reading

Trending

Copyright © 2023