Connect with us

science

Des chimistes révèlent le mécanisme de réaction d’un catalyseur d’énergie propre pour la production d’hydrogène

Published

on

Des chimistes révèlent le mécanisme de réaction d’un catalyseur d’énergie propre pour la production d’hydrogène

Des chimistes révèlent le mécanisme de réaction d’un catalyseur d’énergie propre pour la production d’hydrogène.

L’hydrogène, l’élément le plus simple sur terre, est un carburant propre qui pourrait révolutionner l’industrie de l’énergie. Cependant, l’accès à l’hydrogène n’est en aucun cas un processus simple ou propre. L’hydrogène pur est extrêmement rare dans la nature et les méthodes pratiques pour le produire reposent actuellement sur des combustibles fossiles. Mais si les scientifiques trouvent le bon catalyseur chimique, qui peut séparer l’hydrogène et l’oxygène dans les molécules d’eau, alors l’hydrogène pur peut être produit à partir de sources d’énergie renouvelables telles que l’énergie solaire.

Maintenant, les scientifiques sont sur le point de trouver ce catalyseur. Des chimistes de l’Université du Kansas et du Laboratoire national de Brookhaven du Département américain de l’énergie ont révélé le mécanisme de réaction complet d’une classe clé de catalyseurs de séparation de l’eau. était leur travail publié Dans Actes de l’Académie nationale des sciences (PNAS).

Dmitri PolyanskiLe chimiste de Brookhaven, co-auteur de l’article, a déclaré :

Il est très rare que vous puissiez obtenir une compréhension complète de l’ensemble du cycle de motivation.

« Ces réactions passent par de nombreuses étapes, dont certaines sont très rapides et difficiles à remarquer. »

Les étapes intermédiaires rapides rendent difficile pour les scientifiques de déchiffrer où, quand et comment se produisent les parties les plus importantes de la réaction catalytique – et donc, si le catalyseur convient à des applications à grande échelle.

À l’Université du Kansas, le professeur adjoint James Blackmore recherchait des candidats potentiels lorsqu’il a remarqué quelque chose d’inhabituel dans un catalyseur en particulier. Ce catalyseur, appelé composé de pentaméthylcyclopentadiényl rhodium, ou complexe Cp*Rh, montrait la réaction dans une région où les molécules sont normalement stables.

READ  CAPSTONE est de nouveau sous contrôle - SpacePolicyOnline.com

James BlackmoreIl a dit:

Les composés métalliques – des molécules qui contiennent un centre métallique entouré d’un échafaudage organique – sont importants pour leur capacité à catalyser des réactions autrement difficiles.

« Normalement, la réactivité se produit directement au centre du métal, mais dans notre système d’intérêt, l’échafaudage de liaison semble être directement impliqué dans la chimie. »

Alors, qu’est-ce qui interagissait exactement avec le ligand ? L’équipe a-t-elle vraiment remarqué une étape active dans le mécanisme de réaction, ou simplement une réaction secondaire indésirable ? Quelle est la stabilité des produits intermédiaires fabriqués ? Pour répondre à de telles questions, Blakemore s’est associé à des chimistes du laboratoire de Brookhaven pour utiliser une technique de recherche spécialisée appelée radiolyse pulsée.

La radiolyse pulsée exploite la puissance des accélérateurs de particules pour isoler les étapes rapides et difficiles à observer dans un cycle catalytique. Brookhaven Centre d’accélération pour la recherche énergétique (ACER) est l’un des deux seuls sites aux États-Unis où cette technologie peut être mise en œuvre, grâce au complexe d’accélérateur de particules avancé du laboratoire.

David GryllLe chimiste de Brookhaven, un autre co-auteur de l’article, a déclaré :

Nous accélérons les électrons, qui transportent une grande énergie, à des vitesses très élevées.

« Lorsque ces électrons traversent la solution chimique que nous étudions, ils ionisent les molécules de solvant, générant des espèces chargées qui sont interceptées par les molécules de catalyseur, qui changent rapidement de composition. Nous utilisons ensuite des outils de spectroscopie résolue en temps pour surveiller la réaction chimique. après que ce changement rapide se soit produit. »

READ  L'hémisphère sud est plus venteux que l'hémisphère nord, et nous savons enfin pourquoi

Les études de spectroscopie fournissent des données spectrales, qui peuvent être considérées comme des empreintes digitales de la structure de la molécule. En comparant ces signatures à des structures connues, les scientifiques peuvent déchiffrer les changements physiques et électroniques dans les produits intermédiaires de courte durée des réactions catalytiques.

« L’analyse radiométrique des impulsions nous permet d’identifier une seule étape et de l’examiner sur une très courte échelle de temps », a déclaré Polyansky. « Le matériel que nous avons utilisé peut résoudre des événements en un millionième à un milliardième de seconde. »

En combinant la radiolyse pulsée et la spectroscopie accélérée avec les techniques d’électrochimie et de flux arrêté les plus courantes, l’équipe a pu déchiffrer chaque étape du cycle catalytique complexe, y compris les détails de l’interaction inhabituelle qui se produit dans l’échafaudage de liaison.

« L’une des caractéristiques les plus notables de ce cycle de motivation est l’implication directe des liens », a déclaré Grylls. Cette région de la molécule n’est souvent qu’un spectateur, mais nous avons observé une interaction au sein des liaisons qui n’a pas encore été démontrée pour cette classe de composés. Nous avons pu montrer que le groupement hydrure, produit intermédiaire de la réaction, sautait sur le complexe Cp*ligand. Cela a démontré que le ligand Cp* était un élément actif du mécanisme de réaction. »

La capture de ces détails chimiques fins permettra aux scientifiques de concevoir plus facilement des catalyseurs plus efficaces, stables et rentables pour produire de l’hydrogène pur.

Les chercheurs espèrent également que leurs découvertes fourniront des indices pour déchiffrer les mécanismes de réaction pour d’autres classes de catalyseurs.

READ  SpaceX lance les premiers satellites Starlink dotés de capacités Direct to Cell

« En chimie, des résultats comme les nôtres peuvent souvent être généralisés et appliqués pour améliorer d’autres systèmes, mais obtenir des détails importants sur la réaction rapide, comme nous l’avons fait ici, est une étape essentielle », a déclaré Blackmore. « Nous espérons que d’autres groupes de recherche s’appuieront sur nos connaissances et s’appuieront dessus, peut-être en utilisant une interaction améliorée par un lieur pour créer de meilleurs catalyseurs. »

Cette étude n’est qu’une série d’expériences parmi un grand nombre de travaux sur l’énergie propre menés par des scientifiques de l’Université du Kansas et du Brookhaven Lab.

« Nous construisons les connaissances chimiques fondamentales qui aideront un jour les scientifiques à concevoir le catalyseur optimal pour la production d’hydrogène pur », a déclaré Polyansky.

Ce travail a été soutenu par la National Science Foundation et le Department of Energy’s Office of Science.

est en train de lire Les dernières nouvelles qui façonnent le marché de l’hydrogène se trouvent dans le Hydrogen Center

Des chimistes révèlent le mécanisme de réaction d’un catalyseur d’énergie propre, 15 mai 2023

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Un énorme monstre marin préhistorique plus grand que deux bus a été identifié après qu'une jeune fille britannique de 11 ans a trouvé des fossiles sur la plage de Somerset.

Published

on

Un énorme monstre marin préhistorique plus grand que deux bus a été identifié après qu'une jeune fille britannique de 11 ans a trouvé des fossiles sur la plage de Somerset.

Les fossiles découverts par une fillette de 11 ans sur une plage du Somerset appartiennent à… Le plus grand reptile marin de tous les tempsLes experts croient.

Ruby Reynolds – aujourd'hui âgée de 15 ans – a découvert les restes fossilisés d'une mâchoire massive de plus de deux mètres de long en 2020.

Les experts estiment que le monstre marin est l'un des plus grands reptiles marins de tous les temps.Crédit : PA
Ruby a trouvé les restes en cherchant des fossiles en 2020Crédit : PA
On estime que la créature mesure environ 25 mètres de long.Crédit : PA

Elle et son père, Justin Reynolds, ont trouvé la pièce lors d'une chasse aux fossiles dans le village côtier de Blue Anchor.

Les paléontologues affirment que les pièces appartiennent à un type de reptile océanique appelé ichtyosaure, et ils estiment qu'elles mesuraient environ 25 mètres de long, soit la taille de deux bus.

C'était incroyable de découvrir une partie de cet ichtyosaure géant. Je suis très fier d'avoir joué un rôle dans une découverte scientifique comme celle-ci

Robbie Reynolds

Cela équivaut également à la longueur d’une baleine bleue, ce qui en fait l’un des plus grands reptiles marins jamais enregistrés.

La créature préhistorique parcourait les mers il y a environ 202 millions d’années, à l’époque des dinosaures.

Une autre pièce a été trouvée par le chasseur de fossiles Paul de La Salle en 2016 le long de la côte du Somerset à Lillystock, qui était déjà à l'étude.

« Lorsque Robbie et moi avons trouvé les deux premières pièces, nous étions très excités car nous avons réalisé qu'il s'agissait de quelque chose d'important et d'inhabituel », a déclaré Reynolds.

« Quand j'ai trouvé l'arrière de la mâchoire, j'ai été ravi car c'est l'une des parties distinctives de la découverte précédente de Paul. »

Ruby a ajouté : « C’était incroyable de découvrir une partie de cet ichtyosaure géant. Je suis très fière d’avoir joué un rôle dans une découverte scientifique comme celle-ci. »

Le couple a contacté le Dr Dean Lomax, paléontologue à l'Université de Manchester, après avoir découvert un groupe de fossiles.

Les experts ont nommé la créature Ichthyotitan severnensis, ce qui signifie lézard poisson géant de Severn.

Un ancien calmar vampire trouvé en train d'attraper sa dernière proie après 183 millions d'années est une nouvelle espèce, a révélé une étude

Le Dr Lomax a déclaré : « J'ai été époustouflé par cette découverte. En 2018, mon équipe (dont Paul de La Salle) a étudié et décrit la mâchoire géante de Paul, et nous espérions qu'une autre découverte émergerait un jour.

« Ce nouveau spécimen est plus complet, mieux conservé et montre que nous disposons désormais de deux de ces os géants – appelés oblongata – qui ont une forme et une structure uniques.

« Je suis assez excité, c'est le moins qu'on puisse dire. »

Il a ajouté : « J’ai été très impressionné que Robbie et Justin aient correctement identifié cette découverte comme une autre énorme mâchoire d’ichtyosaure.

« Ils ont réalisé qu'il correspondait à celui que nous avions décrit en 2018. Je leur ai demandé s'ils souhaitaient rejoindre mon équipe pour étudier et décrire ce fossile, y compris le nommer. »

« Ils ont sauté sur l'occasion. Pour Ruby, en particulier, elle est maintenant une scientifique publiée qui a non seulement découvert, mais a également contribué à nommer une espèce de reptile préhistorique géant.

En savoir plus sur Irish Sun

« Il n'y a probablement pas beaucoup de jeunes de 15 ans qui peuvent dire ça. Peut-être que Mary Anning est en devenir. »

La nouvelle recherche a été publiée dans la revue Plos One.

Pourquoi les dinosaures ont-ils disparu ?

Voici ce que vous devez savoir…

  • L’effacement des dinosaures a été un événement d’extinction massive et soudain sur Terre.
  • Il a anéanti près des trois quarts des espèces végétales et animales de notre planète il y a environ 66 millions d'années.
  • Cet événement a marqué la fin du Crétacé et a ouvert l’ère Cénozoïque, dans laquelle nous nous trouvons aujourd’hui.
  • Les scientifiques pensent généralement qu’une comète ou un astéroïde massif d’environ 9 miles de diamètre est entré en collision avec la Terre, détruisant la planète.
  • Cet impact aurait déclenché un « effet hivernal » prolongé, endommageant gravement la vie végétale et la chaîne alimentaire qui en dépend.
  • Des recherches récentes suggèrent que cet impact a « déclenché » une activité volcanique importante, qui a également anéanti la vie.
  • Certaines recherches ont indiqué que le nombre de dinosaures était en fait en déclin à cause du changement climatique à cette époque.
  • Mais une étude publiée en mars 2019 affirme que les dinosaures « prospéraient » probablement avant l’extinction.
READ  CAPSTONE est de nouveau sous contrôle - SpacePolicyOnline.com
Continue Reading

science

Des chercheurs ont identifié un ichtyosaure qui pourrait être le plus grand reptile marin connu

Published

on

Des chercheurs ont identifié un ichtyosaure qui pourrait être le plus grand reptile marin connu

Les paléontologues ont identifié ce qui pourrait être le plus grand reptile marin connu.

Un père et sa fille ont découvert les restes fossilisés d'une énorme mâchoire mesurant plus de deux mètres de long sur une plage du Somerset.

Les os appartiennent aux mâchoires d'une nouvelle espèce d'ichtyosaure massif, un type de reptile marin préhistorique.

Les experts estiment que la créature géante mesurait plus de 25 mètres de long.

Ils pensent que le spécimen pourrait représenter le plus grand reptile marin jamais enregistré.

Lorsque Robbie et moi avons trouvé les deux premières pièces, nous étions très excités parce que nous savions que c'était quelque chose d'important et d'inhabituel.

En mai 2020, Justin et Robbie Reynolds de Braunton, Devon, ont découvert les premiers morceaux d'une deuxième mâchoire alors qu'ils recherchaient des fossiles sur la plage de Blue Anchor.

Ruby, alors âgée de 11 ans, a trouvé le premier morceau de l'os géant avant que les deux hommes ne cherchent ensemble d'autres morceaux.

Réalisant qu'ils avaient découvert quelque chose d'important, ils ont contacté le Dr Dean Lomax, paléontologue à l'Université de Manchester.

Le Dr Lomax a contacté Paul de La Salle, un collectionneur de fossiles expérimenté qui avait trouvé la première mâchoire géante en mai 2016 plus loin sur la côte, à Lilystock.

M. Reynolds a déclaré : « Lorsque Robbie et moi avons trouvé les deux premières pièces, nous étions très excités car nous savions que c'était quelque chose d'important et d'inhabituel.

« Quand j'ai trouvé l'arrière de la mâchoire, j'ai été ravi car c'est l'une des parties distinctives de la première découverte de Paul. »

READ  La NASA partage les missions de la mission de la station spatiale SpaceX Crew-9

Ruby a ajouté : « C'était incroyable de découvrir une partie de cet ichtyosaure géant. Je suis très fière d'avoir joué un rôle dans une découverte scientifique comme celle-ci.

«J'ai été étonné par cette découverte», a déclaré le Dr Lomax. En 2018, mon équipe (dont Paul de La Salle) a étudié et décrit la mâchoire géante de Paul, et nous espérions qu'un jour une autre verrait le jour.

« Ce nouveau spécimen est plus complet, mieux conservé et montre que nous disposons désormais de deux de ces os géants – appelés oblongata – qui ont une forme et une structure uniques.

« Je suis plutôt excité, c'est le moins qu'on puisse dire. »

Il a ajouté : « J’ai été très impressionné que Robbie et Justin aient correctement identifié cette découverte comme une autre énorme mâchoire d’ichtyosaure.

« Ils ont réalisé qu'il correspondait à celui que nous avions décrit en 2018. Je leur ai demandé s'ils souhaitaient rejoindre mon équipe pour étudier et décrire ce fossile, y compris le nommer. »

« Ils ont sauté sur l'occasion. Pour Ruby, en particulier, elle est maintenant une scientifique publiée qui a non seulement découvert, mais a également contribué à nommer une espèce de reptile préhistorique géant.

« Il n'y a probablement pas beaucoup de jeunes de 15 ans qui peuvent dire ça. Peut-être que Mary Anning est en devenir. »

Au fil du temps, l’équipe – y compris le duo père-fille – a trouvé d’autres pièces de la même mâchoire qui s’emboîtent parfaitement, comme un puzzle vieux de plusieurs millions d’années.

La dernière pièce a été découverte en octobre 2022.

Les chercheurs, dirigés par le Dr Lomax, ont révélé que les os de la mâchoire appartenaient à une nouvelle espèce d'ichtyosaure géant qui aurait eu la taille d'une baleine bleue.

READ  Hubble voit une petite galaxie naine sans structure définie

L’équipe a nommé la créature Ichthyotitan severnensis, ce qui signifie lézard poisson géant de Severn.

Datant de la fin du Trias, à l’époque dite rhétique, les ossements ont environ 202 millions d’années.

Des ichtyosaures géants nageaient dans les mers à cette époque, tandis que les dinosaures parcouraient les terres.

Mais les archives rocheuses et fossiles indiquent qu'après l'extinction massive mondiale au Trias supérieur, les ichtyosaures géants ont disparu, ce qui signifie que les os découverts dans l'étude représentent les plus récents de leur espèce.

L'étudiant à la maîtrise Marcelo Perillo, de l'Université de Bonn, en Allemagne, a mené des investigations plus approfondies et a découvert que l'animal était encore en croissance au moment de sa mort.

Il a déclaré : « Beaucoup de choses sur ces géants sont encore entourées de mystère, mais un fossile à la fois, nous pourrons percer leur secret. »

En conclusion des travaux, M. de La Salle a ajouté : « La conviction que ma découverte en 2016 suscitera autant d'intérêt pour ces énormes créatures me remplit de joie.

« Quand j'ai trouvé la première mâchoire, je savais que c'était quelque chose de spécial. En avoir une deuxième qui confirme nos découvertes est incroyable. Je suis tellement heureuse. »

La nouvelle recherche a été publiée dans la revue Plos One.

Continue Reading

science

Découvrez les secrets de la chimie spatiale

Published

on

Découvrez les secrets de la chimie spatiale

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture

Les cristaux coulombiens entourés de molécules sont utilisés au Laboratoire Lewandowski pour étudier les réactions astrochimiques. Crédit : Stephen Burroughs/Olivia Krohn et le groupe Lewandowski

× Fermer

Les cristaux coulombiens entourés de molécules sont utilisés au Laboratoire Lewandowski pour étudier les réactions astrochimiques. Crédit : Stephen Burroughs/Olivia Krohn et le groupe Lewandowski

Même si cela ne semble pas être le cas, l’espace interstellaire entre les étoiles n’est pas du tout vide. Des atomes, des ions, des molécules et bien plus encore existent dans cet environnement éthéré connu sous le nom de milieu interstellaire (ISM). L’ISM fascine les scientifiques depuis des décennies, avec au moins 200 molécules uniques formées dans son environnement froid et basse pression. C'est un sujet qui relie les domaines de la chimie, de la physique et de l'astronomie, car les scientifiques de chaque domaine travaillent pour déterminer les types de réactions chimiques qui s'y produisent.

Passons maintenant à la couverture de l'article Journal de chimie physique AHeather Lewandowski, boursière de la JILA et professeure de physique à l'Université du Colorado à Boulder, et Olivia Krohn, ancienne étudiante diplômée de la JILA, mettent en avant leur travail visant à imiter les conditions ISM à l'aide de cristaux de Coulomb, une structure pseudo-cristalline froide, pour observer les ions et les molécules neutres interagir les uns avec les autres.

Grâce à leurs expériences, les chercheurs ont pu résoudre la dynamique chimique des réactions neutres des ions en utilisant le microrefroidissement laser et la spectrométrie de masse pour contrôler les états quantiques, leur permettant ainsi de simuler avec succès les réactions chimiques ISM. Leurs travaux rapprochent les scientifiques de la réponse à certaines des questions les plus profondes sur l’évolution chimique de l’univers.

Filtrage par énergie

« Ce domaine réfléchit depuis longtemps aux réactions chimiques qui seront les plus importantes pour nous renseigner sur la composition du milieu interstellaire », explique Cron, premier auteur de l'étude.

« Un groupe vraiment important est celui des interactions moléculaires neutres des ions. Et c'est exactement à cela que convient ce dispositif expérimental du groupe Lewandowski, non seulement pour étudier les interactions chimiques neutres des ions, mais également à des températures relativement froides. »

Pour commencer l'expérience, Krohn et d'autres membres du groupe de Levandowski ont chargé un piège à ions dans une chambre à très vide avec différents ions. Les molécules neutres ont été présentées séparément. Même s’ils savaient quels réactifs seraient utilisés dans une expérience chimique de type ISM, les chercheurs n’étaient pas toujours sûrs des produits qui seraient produits. En fonction de leur test, les chercheurs ont utilisé différents types d'ions et de molécules neutres similaires à ceux trouvés dans l'ISM. Cela inclut CCl+ Ions fragmentés de tétrachloroéthylène.

« CCl+ On s’attend à ce qu’il se situe dans différentes régions de l’espace. « Mais personne n'a pu tester efficacement son interaction par le biais d'expériences sur Terre, car c'est très difficile à réaliser », ajoute Krohn. « Il faut le décomposer du tétrachloroéthylène avec un laser ultraviolet. Cela crée toutes sortes de fragments ioniques, pas seulement du CCl. »+« Cela pourrait compliquer les choses. »

Soit en utilisant du calcium, soit du CCl+ Ions Le dispositif expérimental a permis aux chercheurs de filtrer les ions indésirables à l'aide d'une excitation résonante, laissant derrière eux les produits chimiques réactifs.

« Vous pouvez secouer le piège à une fréquence qui correspond au rapport masse/charge d'un ion particulier, ce qui le fait sortir du piège », explique Krohn.

Refroidissement laser pour former des cristaux coulombiens

Après filtration, les chercheurs ont refroidi leurs ions en utilisant un processus appelé refroidissement Doppler. Cette technologie utilise la lumière laser pour réduire le mouvement des atomes ou des ions, les refroidissant efficacement en exploitant l'effet Doppler pour ralentir préférentiellement le mouvement des molécules vers le laser de refroidissement.

Lorsque le refroidissement Doppler a abaissé la température des particules jusqu'à des niveaux millikelvins, les ions se sont organisés en une structure pseudo-cristalline, un cristal coulombien, maintenu en place par des champs électriques à l'intérieur de la chambre à vide. Le cristal coulombien résultant avait une forme ellipsoïde avec des particules plus lourdes reposant dans une coquille à l'extérieur des ions calcium, poussées hors du centre du piège par les particules plus légères en raison des différences dans les rapports masse/charge.

Grâce au piège profond contenant les ions, les cristaux coulombiens peuvent rester piégés pendant des heures, et Krohn et son équipe peuvent les imager dans ce piège. En analysant les images, les chercheurs ont pu identifier et surveiller l’interaction en temps réel, et voir les ions s’organiser en fonction de leurs rapports masse/charge.

L’équipe a également déterminé la dépendance de l’état quantique de l’interaction des ions calcium avec l’oxyde nitrique en affinant les lasers cryogéniques, ce qui a permis de produire des combinaisons relatives spécifiques d’états quantiques pour les ions calcium piégés.

« Ce qui est amusant, c'est qu'il tire parti de l'une des techniques les plus spécifiques de la physique atomique pour examiner les interactions quantiques, ce qui, je pense, constitue un peu plus le cœur de la physique dans les trois domaines : chimie, astronomie et physique. , même si les trois sont ce qu'ils sont toujours impliqués.

Le timing est primordial

Outre la filtration par piège et le refroidissement Doppler, une troisième technique expérimentale a aidé les chercheurs à simuler les interactions ISM : une configuration de spectrométrie de masse à temps de vol (TOF-MS). Dans cette partie de l’expérience, une impulsion à haute tension a accéléré les ions à travers le tube de vol, où ils ont heurté un détecteur à plaque à microcanaux. Les chercheurs ont pu identifier les particules dans le piège en fonction du temps nécessaire aux ions pour atteindre la plaque et de leurs techniques d'imagerie.

« Grâce à cela, nous avons pu réaliser deux études différentes dans lesquelles nous avons pu résoudre les masses adjacentes pour les ions réactifs et produits », ajoute Kron.

Ce troisième bras de l'appareil expérimental de la chimie ISM a encore amélioré la précision, car les chercheurs disposent désormais de plusieurs moyens pour identifier les produits créés dans les réactions de type ISM et leurs masses spécifiques.

Le calcul de la masse des produits potentiels était particulièrement important, car l’équipe était alors en mesure d’échanger les réactifs initiaux avec des isotopes de masses différentes et de voir ce qui se passait.

Comme l'explique Krohn : « Cela nous permet de jouer des tours sympas comme remplacer des atomes d'hydrogène par des atomes de deutérium ou remplacer différents atomes par des isotopes plus lourds. Lorsque nous faisons cela, nous pouvons voir par spectrométrie de masse à temps de vol comment nos produits ont changé, ce qui est le cas. nous donne plus de confiance dans nos connaissances sur la façon d'identifier ce que sont ces produits.

Étant donné que les astrochimistes ont observé plus de molécules contenant du deutérium dans l'ISM que ce que l'on pourrait attendre du rapport atomique deutérium/hydrogène observé, l'échange isotopique dans des expériences comme celle-ci permet aux chercheurs de faire un pas de plus vers la détermination de la raison.

« Je pense que, dans ce cas, cela nous permet d'avoir une bonne détection de ce que nous voyons », explique Krohn. « Cela ouvre plus de portes. »

Plus d'information:
OA Krohn et al., Interactions moléculaires ioniques froides dans l'environnement extrême d'un cristal coulombien, Journal de chimie physique A (2024). est ce que je: 10.1021/acs.jpca.3c07546

Informations sur les magazines :
Journal de chimie physique A


READ  Le système solaire envoie un autre astéroïde se diriger vers la Terre ; Ce rocher a à peu près la taille de l'avion projeté aujourd'hui
Continue Reading

Trending

Copyright © 2023