Connect with us

science

Des ingénieurs conçoivent des planeurs sans moteur pour explorer Mars

Published

on

02 juillet 2022

(Nouvelles de Nanwerk) Huit engins spatiaux actifs, dont trois exploités par la NASA, orbitent autour de Mars, collectant des images de la surface de la planète à une résolution d’environ un pied par pixel. Trois Earth Rovers traversent pour cartographier de petites zones de la planète avec une plus grande précision. Mais ce qui se trouve à des centaines de kilomètres entre les rovers et l’orbite – y compris les processus climatiques atmosphériques et les caractéristiques géologiques telles que les volcans et les vallées – est souvent d’un grand intérêt pour les scientifiques planétaires.

« Vous avez cette pièce vraiment importante et cruciale dans cette couche limite planétaire, comme dans les premiers kilomètres au-dessus de la surface de la Terre », a déclaré Alexander Kling, chercheur au Mars Climate Modeling Center de la NASA. « C’est là que se produisent tous les échanges entre la surface et l’atmosphère. C’est là que les poussières sont capturées et envoyées dans l’atmosphère, où les gaz traces se mélangent, où la modulation du vent à grande échelle se produit par les écoulements des vallées de montagne. Et nous ne Je n’ai pas beaucoup de données sur ce sujet « .

Kling s’associe à une équipe d’ingénieurs de l’Université de l’Arizona visant à combler ce manque de données en concevant un planeur sans moteur qui peut survoler la surface de Mars pendant des jours à la fois, en utilisant uniquement l’énergie éolienne pour la propulsion. Les planeurs seront équipés de capteurs de vol, de température et de gaz ainsi que de caméras, et chacun ne pèse que 11 livres.

L’équipe a détaillé sa proposition dans un article publié dans la revue Cosmos (« Explorer Mars avec des planeurs »). Atterrissage sur Mars en planeur L’équipe a effectué un lancement restreint d’une première version du planeur, alors qu’il descendait lentement au sol attaché à un ballon. (Photo: Collège d’ingénierie de l’Université de l’Arizona)

Vol d’albatros

Un voyage sur Mars est un défi en raison de la faible atmosphère de la planète, et ce n’est pas la première équipe qui tente de le relever. Notamment, l’innovation de la NASA est un hélicoptère de 4 livres qui a atterri à Jezero Crater sur Mars en 2021. Avec une technologie de vol miniature et un système rotatif d’environ 4 pieds de haut, c’est le premier appareil à tester le vol contrôlé motorisé sur une autre planète. Mais la voiture à énergie solaire ne peut voler que trois minutes à la fois, atteignant une hauteur de seulement 12 mètres, soit environ 39 pieds.

READ  Écoutez les sons festifs de l'espace avec une nouvelle sonication

« Toutes ces autres technologies étaient très limitées par la puissance », a déclaré le premier auteur de l’article, Adrian Buskila, étudiant au doctorat en génie aérospatial au Small Air Vehicle Laboratory du professeur Sergei Shkaraev à l’Université de l’Arizona. « Ce que nous proposons, c’est simplement d’utiliser l’énergie sur place. C’est une sorte de saut en avant dans les méthodes d’extension de mission. Parce que la question clé est : comment volez-vous gratuitement ? Comment utilisez-vous le vent existant, la thermodynamique existante pour éviter utiliser des panneaux solaires et compter sur des batteries qu’il faut recharger ? »

Des planeurs éoliens légers et peu coûteux peuvent être la solution. Les avions, qui ont une envergure d’environ 11 pieds, utiliseront plusieurs méthodes de vol différentes, y compris le simple vol stationnaire statique lorsqu’il y a suffisamment de vent vertical. Mais ils peuvent aussi utiliser une technologie appelée vol stationnaire dynamique, qui, comme un albatros en vol long, profite de la vitesse du vent souvent horizontale augmentant avec l’altitude — un phénomène particulièrement fréquent sur Mars.

L’élévation dynamique ressemble à celle que les skieurs en forme de S utilisent pour contrôler leur descente de la montagne. Cependant, chaque fois que le planeur change de direction, il commence également à changer d’altitude – et au lieu de ralentir le planeur, la manœuvre l’aide à augmenter sa vitesse.

Les avions volent légèrement vers le haut dans la direction d’un vent lent à basse altitude. Lorsqu’ils atteignent la vitesse du vent élevée, ils pivotent de 180 degrés et permettent au vent à grande vitesse de les diriger vers l’avant avec un léger angle d’atterrissage. Lorsqu’ils commencent à manquer d’énergie à cause du vent à grande vitesse, ils répètent le processus en progressant.

READ  La Terre évoluera-t-elle en un autre supercontinent dans 200 millions d'années ? C'est ce que disent les scientifiques

Grâce à cette manœuvre astucieuse, les planeurs peuvent continuellement récolter l’énergie de l’atmosphère, volant pendant des heures, voire des jours à la fois. C’est gratuit.

« C’est quelque chose qu’il faut voir pour croire », a déclaré le co-auteur de l’article, Jekan Thanga, professeur adjoint d’ingénierie aéronautique et mécanique à l’UArizona.

Les rovers actuels ont principalement capturé des images des plaines sablonneuses et plates de Mars – les seules zones où le rover peut atterrir en toute sécurité. Mais les planeurs pourront explorer de nouvelles zones en profitant de la façon dont les modèles de vent changent autour des formations géologiques telles que les canyons et les volcans.

« Avec cette plate-forme, vous pouvez voler et vous rendre dans ces endroits vraiment cool et vraiment intéressants », a déclaré Kling. Planeur en gros plan de Mars Les planeurs sur Mars contiendront un ensemble de capteurs de navigation spécialement conçus, ainsi qu’une caméra et des capteurs de température et de gaz pour collecter des informations sur l’atmosphère et le paysage martiens. (Photo: Collège d’ingénierie de l’Université de l’Arizona)

Les bonnes choses viennent en petits paquets

L’équipe propose d’envoyer des planeurs sur Mars comme charge utile secondaire dans le cadre d’une mission plus vaste. Tanga étudie comment déployer des planeurs depuis un vaisseau spatial dans l’atmosphère. À bord du vaisseau spatial, les planeurs seront enfermés dans des CubeSats, des satellites miniatures pas plus gros qu’un annuaire téléphonique. Une fois les CubeSats lancés et les avions lancés, les avions s’ouvriront, comme des origamis, ou se gonfleront, comme des flotteurs de piscine high-tech, et se solidifieront à leur taille maximale.

L’équipe explore également la possibilité d’un dirigeable ou d’un dirigeable transportant des planeurs dans l’atmosphère. Cela ralentira l’atterrissage des planeurs et leur permettra de décoller lorsque les conditions de vent sont idéales ou lorsque vous vous approchez d’une zone de grand intérêt. Les planeurs peuvent reconstituer un ballon ou un dirigeable après le vol et continuer à accomplir plusieurs missions.

READ  La NASA présente le premier service de livraison commerciale vers la Lune

Le voyage se termine, la mission continue

Après avoir atterri sur Mars, les avions continueront de transmettre des informations sur l’atmosphère au vaisseau spatial, devenant essentiellement des stations météorologiques. Les météorologues peuvent prédire le temps sur Terre avec une précision relative, en partie parce qu’il existe des stations météorologiques partout sur notre planète qui forment un réseau d’informations, et toutes les données qu’ils collectent sont constamment introduites dans des modèles prédictifs. Par conséquent, chaque planeur sur Mars qui a cessé de voler – qu’il ait terminé son exploration comme prévu ou que quelque chose se soit mal passé – pourrait devenir un autre nœud très important de ce réseau.

« Si notre puissance de vol s’épuise, ou si les capteurs inertiels échouent soudainement pour une raison quelconque, nous nous attendons à garder la science », a déclaré Buskila. « Du point de vue de la science planétaire, la mission continue. »

L’équipe a effectué une modélisation mathématique approfondie des schémas de vol des planeurs sur la base des données climatiques de Mars. Il reste encore des recherches à faire concernant les trajectoires de vol, les systèmes d’amarrage potentiels, etc. Mais cet été, ils testeront des avions expérimentaux à 15 000 pieds au-dessus du niveau de la mer, où l’atmosphère terrestre est plus fine et les conditions de vol plus proches de celles de Mars.

« Nous pouvons utiliser la Terre comme laboratoire pour étudier le vol sur Mars », a déclaré Shkaraev.

L’équipe espère finalement que la NASA financera la mission et lui permettra de « rouler » sur la mission Mars à grande échelle déjà en cours de développement. Kling a déclaré que la nature peu coûteuse de l’effort de planeur signifie qu’il peut être rentable relativement rapidement, peut-être en années plutôt qu’en décennies nécessaires pour une mission à grande échelle.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Trois lancements de missiles spéciaux à surveiller

Published

on

Trois lancements de missiles spéciaux à surveiller

Avez-vous vu le lancement du Starship de SpaceX plus tôt ce mois-ci ? Si cela a aiguisé votre appétit pour des lancements de fusées plus avancés, alors vous avez de la chance car cet été verra trois autres lancements de grande envergure.

Attendez-vous à une rare sortie de la fusée Falcon Heavy de SpaceX, au lancement de la première nouvelle fusée et à une tentative d’envoyer des astronautes plus loin dans l’espace que jamais depuis les missions Apollo de la NASA au début des années 1970.

Voici tout ce que vous devez savoir – et les dates de votre agenda.

Mardi 25 juin : Rare lancement et atterrissage tandem

Mission : SpaceX Falcon Heavy lance le satellite GOES-U de la NOAA.

Où regarder : SpaceX site Web ou Chaîne Youtube.

La dixième fusée SpaceX Falcon Heavy sera lancée aujourd’hui depuis le Kennedy Space Center en Floride, mettant en orbite un satellite météorologique NASA/NOAA GOES-U. GOES-U est unique en ce sens qu’il dispose d’un coronographe qui image mystérieusement l’atmosphère extérieure la plus chaude du Soleil, aidant ainsi les physiciens solaires à prédire avec plus de précision la météo spatiale.

Falcon Heavy est un lanceur lourd partiellement réutilisable, et le point culminant sera de voir ses deux propulseurs atterrir côte à côte sur deux plateformes côte à côte.

La NASA et SpaceX visent une fenêtre de lancement de deux heures qui s’ouvrira à 17 h 16 HNE le mardi 25 juin, mais gardez un œil sur SpaceX se nourrit de X Pour un timing précis.

Mardi 9 juillet : Une nouvelle fusée puissante décolle pour la première fois dans le ciel

Mission : Lancer pour la première fois la nouvelle fusée géante en Europe.

Où regarder : Agence spatiale européenne site Web ou Chaîne Youtube.

L’Agence spatiale européenne a confirmé le premier lancement de la sonde Ariane 6 depuis le port spatial européen en Guyane française.

Le nouveau lanceur lourd européen remplace Ariane 5 et dispose d’un étage supérieur rallumable, qui lui permettra de lancer plusieurs missions sur différentes orbites en un seul vol.

Vendredi 12 juillet : Polaris Dawn atteint 870 milles au-dessus de la Terre

Mission : SpaceX Falcon 9 lancera un équipage commercial de quatre astronautes privés dans l’espace à bord d’une capsule Dragon.

Où regarder : SpaceX site Web ou Chaîne Youtube.

Le programme Polaris est un partenariat avec SpaceX qui verra jusqu’à trois missions de vols spatiaux habités pour démontrer de nouvelles technologies. Elle est dirigée par Jared Isaacman, fondateur de Shift4 Payments, parti dans l’espace en tant que commandant de la mission SpaceX Inspiration4 en septembre 2021.

Cette première mission, « Polaris Dawn », verra le vaisseau spatial Dragon avec quatre astronautes (Isaacman, Scott Poteet, Sarah Gillies et Anna Menon) voler à 870 milles au-dessus de la Terre, le niveau le plus élevé depuis les missions Apollo sur la Lune.

Suis-moi Twitter/X Et Instagram.

Récupère mes livres Observation des étoiles en 2024, Programme d’observation des étoiles pour débutants Et Quand aura lieu la prochaine éclipse ?

Je vous souhaite un ciel clair et des yeux écarquillés.

READ  La NASA présente le premier service de livraison commerciale vers la Lune
Continue Reading

science

Une source de cristaux liquides de paires de photons

Published

on

La conversion ascendante paramétrique spontanée (SPDC), en tant que source de photons intriqués, présente un grand intérêt pour la physique quantique et la technologie quantique, mais jusqu’à présent, elle ne peut être mise en œuvre que dans des matériaux solides. Des chercheurs de l’Institut Max Planck pour la science de la lumière (MPL) et de l’Institut Josef Stefan de Ljubljana, en Slovénie, ont démontré pour la première fois la SPDC dans un cristal liquide. Les résultats ont été récemment publiés dans natureouvrent la voie à une nouvelle génération de sources quantiques : efficaces et accordables par champs électriques.

Diviser un photon en deux est l’un des outils les plus utiles en photonique quantique. Il peut créer des paires de photons intriqués, des photons uniques, de la lumière compressée et des états photoniques encore plus complexes, essentiels aux technologies photoniques quantiques. Ce processus est connu sous le nom de conversion abaisseur automatique (SPDC).

Le SPDC est étroitement lié à la symétrie centrale. Il s’agit de la symétrie par rapport à un point – par exemple, un carré est symétrique au centre mais pas un triangle. Essentiellement, en divisant un photon en deux, le SPDC brise la symétrie centrale. Par conséquent, cela n’est possible que dans les cristaux dont la cellule primaire est asymétrique au centre. La SPDC ne peut pas se produire dans les liquides ou les gaz ordinaires, car ces matériaux sont isotropes.

Cependant, des chercheurs ont récemment découvert des cristaux liquides de structure différente, appelés cristaux liquides nématiques ferroélectriques. Bien qu’ils soient fluides, ces matériaux se caractérisent par une forte rupture de symétrie centrale. Leurs molécules sont allongées, asymétriques et surtout, elles peuvent être réorientées par un champ électrique externe. La réorientation des molécules modifie la polarisation des paires de photons générées, ainsi que le taux de génération. Avec un conditionnement approprié, un échantillon de ces matériaux peut constituer un dispositif extrêmement utile car ils produisent efficacement des paires de photons, peuvent être facilement réglés à l’aide d’un champ électrique et peuvent être intégrés dans des dispositifs plus complexes.

READ  Vers parasites : détournement d'hôtes : les vers parasites peuvent emprunter des gènes pour manipuler le comportement

À l’aide d’échantillons préparés à l’Institut Josef Stefan (Ljubljana, Slovénie) à partir de cristaux liquides nématiques ferroélectriques fabriqués par Merck Electronics KGaA, des chercheurs de l’Institut Max Planck pour la science de la lumière ont appliqué pour la première fois la SPDC à un cristal liquide. . L’efficacité de génération de photons intriqués est aussi élevée que celle des meilleurs cristaux non linéaires, tels que le niobate de lithium, d’épaisseur similaire. En appliquant un champ électrique de quelques volts seulement, ils ont pu activer et désactiver la génération de paires de photons, ainsi que modifier les propriétés de polarisation de ces paires. Cette découverte marque le début d’une nouvelle génération de sources lumineuses quantiques : flexibles, accordables et efficaces.

Continue Reading

science

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Published

on

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Illustration de la conception expérimentale générale du CREME exoMIP (Tsigaridis et al. en préparation), comme exemple de la façon dont l’exoMIP peut être structuré pour permettre une large participation communautaire. — Ph.EP astronomique

Alors que le télescope spatial James Webb commence à renvoyer des observations, il est plus important que jamais que les modèles climatiques exoplanétaires soient capables de prédire de manière cohérente et correcte l’observabilité des exoplanètes, de récupérer leurs données et d’interpréter les environnements planétaires à partir de ces données.

Les comparaisons entre modèles jouent un rôle crucial dans ce contexte, surtout à l’heure où peu de données sont disponibles pour valider les prédictions des modèles. Le groupe de travail CUISINES du Nexus for Exoplanet System Science (NExSS) de la NASA soutient une approche systématique pour évaluer les performances des modèles d’exoplanètes et fournit ici un cadre pour mener des projets d’intercomparaison de modèles d’exoplanètes organisés par la communauté (exoMIP).

Le cadre CUISINES adapte spécifiquement les pratiques de la communauté climatique terrestre pour répondre aux besoins des chercheurs exoplanétaires, y compris une gamme de types de modèles, de cibles planétaires et d’études spatiales paramétriques. Son objectif est d’aider les chercheurs à travailler collectivement, équitablement et ouvertement pour atteindre des objectifs communs.

Le cadre CUISINES repose sur cinq principes : 1) Définir à l’avance la ou les questions de recherche que exoMIP vise à aborder. 2) Créer une conception pilote qui maximise la participation de la communauté et en faire la publicité largement. 3) Planifiez un calendrier de projet qui permet à tous les membres d’exoMIP de participer pleinement. 4) Créer des produits de données à partir des résultats du modèle pour une comparaison directe avec les observations. 5) Créez un plan de gestion des données applicable aujourd’hui et évolutif à l’avenir.

READ  De nouveaux bioadhésifs forment des liaisons adhésives qui se renforcent dans l’eau

Au cours des premières années de son existence, CUISINES fournit déjà un soutien logistique à 10 exoMIP et continuera à organiser des ateliers annuels pour approfondir les commentaires de la communauté et présenter de nouvelles idées d’exoMIP.

Linda E. Sohl, Thomas J. Fuchez, Sean Domagal-Goldman, Duncan A. Christie, Russell Detrick, Jacob Haque-Misra, C.E. Harman, Nicholas Iero, Nathan J. Mayne, Costas Tsigarides, Geronimo L. Villanueva, Ambre V. Jeune, Guillaume Chaverot

Commentaires : 14 pages, deux numéros
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP) ; Instruments et méthodes astrophysiques (astro-ph.IM)
Citer comme : arXiv:2406.09275 [astro-ph.EP] (ou arXiv :2406.09275v1 [astro-ph.EP] pour cette version)
Date de soumission
Qui : Linda Suhl
[v1] Jeudi 13 juin 2024, 16:14:22 UTC (903 Ko)
https://arxiv.org/abs/2406.09275
Astrobiologie

Continue Reading

Trending

Copyright © 2023