juin 9, 2023

7seizh

Dernières nouvelles et nouvelles du monde de 7 Seizh sur les affaires, les sports et la culture. Nouvelles vidéo. Nouvelles des États-Unis, d'Europe, d'Asie-Pacifique, d'Afrique, du Moyen-Orient, d'Amérique.

Etude de la chimie oxydée et appauvrie en fer de la croûte continentale terrestre et non issue de la cristallisation du minéral calcédoine :

De nouvelles recherches tentent de définir la compréhension de la croûte terrestre en testant et en démystifiant une hypothèse populaire sur les raisons pour lesquelles la croûte continentale a des niveaux de fer inférieurs et plus d’oxydation que la croûte océanique. La mauvaise composition du fer dans la croûte continentale est l’une des principales raisons pour lesquelles de vastes portions de la surface de la Terre se dressent au-dessus du niveau de la mer en tant que terre sèche, rendant la vie terrestre possible aujourd’hui. L’étude, publiée dans la revue Science, utilise des expériences de laboratoire pour montrer que la chimie oxydative appauvrie en fer typique de la croûte continentale terrestre ne provient probablement pas de la cristallisation du grenat minéral, comme une explication populaire suggérée en 2018.

La recherche a été menée par Elizabeth Cottrell, géologue de recherche et conservatrice des roches au Musée national d’histoire naturelle de la Smithsonian Institution, et l’auteure principale de l’étude Megan Holy-Cross, ancienne boursière Peter Buck et boursière de la National Science Foundation au musée et maintenant assistante. professeur à l’Université Cornell. université. Les éléments constitutifs de la nouvelle croûte continentale éclatent du plus profond de la Terre dans ce que l’on appelle les volcans de l’arc continental, qui se trouvent dans les zones de subduction où une plaque océanique s’enfonce sous une plaque continentale. Dans l’explication du grenat de l’état appauvri et oxydé du fer dans la croûte continentale, la cristallisation du grenat dans le magma sous ces volcans continentaux élimine le fer non oxydé (réduit ou ferrique, comme on l’appelle parmi les scientifiques) des plaques terrestres, appauvrissant le fer au en même temps. Le magma fait fondre le fer en le laissant plus oxydé.

Une conséquence majeure de la diminution de la teneur en fer de la croûte continentale terrestre par rapport à la croûte océanique est qu’elle rend les continents moins denses et plus flottants, provoquant l’élévation des plaques continentales au-dessus du manteau de la planète à partir des plaques océaniques. Cette différence de densité et de flottabilité est l’une des principales raisons pour lesquelles les continents ont des terres sèches alors que les croûtes océaniques sont sous l’eau, et pourquoi les plaques continentales apparaissent toujours au-dessus lorsqu’elles rencontrent des plaques océaniques dans les zones de subduction. L’explication de Garnet sur l’épuisement et l’oxydation du fer dans l’arc continental du magma était convaincante, mais Cottrell a déclaré qu’un aspect ne lui convenait tout simplement pas.

READ  La NASA enquête sur les ovnis sur le Mars Rover Sample System

« Vous avez besoin de hautes pressions pour rendre l’agate stable, et vous trouvez ces magmas à faible teneur en fer dans des endroits où la croûte n’est pas aussi épaisse, donc la pression n’est pas très élevée », a-t-elle déclaré. En 2018, Cottrell et ses collègues ont cherché un moyen de tester si la cristallisation des grenats en profondeur sous ces volcans d’arc était effectivement nécessaire au processus de formation de la croûte continentale telle qu’elle est comprise. Pour y parvenir, Cottrell et Holicros ont dû trouver des moyens de reproduire la chaleur et la pression extrêmes de la croûte terrestre en laboratoire, puis développer des techniques suffisamment sensibles pour non seulement mesurer la quantité de fer présente, mais aussi pour distinguer l’oxydation de ce fer.

Pour recréer l’énorme pression et la chaleur trouvées sous les volcans de l’arc continental, l’équipe a utilisé des presses à cylindre à piston au laboratoire haute pression du musée et à Cornell. Le piston d’un cylindre à piston hydraulique a à peu près la taille d’un mini-réfrigérateur et est composé principalement d’acier et de carbure de tungstène incroyablement épais et résistants. La force appliquée par un gros piston hydraulique entraîne des pressions très élevées sur de petits échantillons de roche, d’environ un millimètre cube. L’ensemble est constitué d’isolants électriques et thermiques entourant l’échantillon de roche, ainsi que d’un four cylindrique. L’association d’une presse piston-cylindre et d’un ensemble chauffant permet des expériences pouvant atteindre les très hautes pressions et températures rencontrées sous les volcans. Dans 13 expériences différentes, Cottrell et Holicros ont fait pousser des échantillons de grenat de roche en fusion à l’intérieur d’une presse à cylindre à piston sous des pressions et des températures conçues pour simuler les conditions à l’intérieur des chambres magmatiques au plus profond de la croûte terrestre. Les pressions utilisées dans les expériences variaient de 1,5 à 3 gigapascals, soit environ 15 000 à 30 000 pressions terrestres, soit 8 000 fois plus que la pression à l’intérieur d’une canette de soda. Les températures variaient de 950 à 1230 degrés Celsius, suffisamment chaudes pour faire fondre la roche.

READ  La persistance de Mars empêche le stockage des échantillons de roche à cause des débris

Ensuite, l’équipe a collecté des grenats de la National Rock Collection de la Smithsonian Institution et d’autres chercheurs du monde entier. Surtout, ce groupe de grenats avait déjà été analysé afin que leurs concentrations de fer oxydé et non oxydé soient connues. Enfin, les auteurs de l’étude ont apporté le matériel de leurs expériences et ceux recueillis auprès des groupes à la source avancée de photons du laboratoire national d’Argonne du département américain de l’énergie dans l’Illinois. L’équipe a utilisé des faisceaux de rayons X à haute énergie pour effectuer une spectroscopie d’absorption des rayons X, une technique qui peut renseigner les scientifiques sur la structure et la composition des matériaux en fonction de la façon dont ils absorbent les rayons X. Dans ce cas, les chercheurs examinaient les concentrations de fer oxydé et non oxydé.

Des échantillons avec des proportions connues de fer oxydé et non oxydé ont fourni un moyen de vérifier et d’étalonner les mesures de spectroscopie d’absorption des rayons X de l’équipe, et ont également facilité la comparaison avec les matériaux de leurs expériences. Les résultats de ces tests ont révélé que l’agate n’incorporait pas suffisamment de fer non oxydé provenant des échantillons de roche pour tenir compte des niveaux d’appauvrissement en fer et d’oxydation présents dans les magmas qui sont les éléments constitutifs de la croûte continentale terrestre.

« Ces résultats font du modèle de cristal de grenat une explication très improbable de la raison pour laquelle le magma des volcans continentaux est oxydé et le fer est épuisé », a déclaré Cottrell. « Il est probable que les conditions dans le manteau terrestre sous la croûte continentale créent ces conditions oxydatives. » Comme beaucoup de découvertes scientifiques, les découvertes mènent à plus de questions : « Qu’est-ce qui conduit à l’oxydation ou à l’épuisement du fer ? » a demandé Cotrell. « Si l’agate ne cristallise pas dans la croûte et a quelque chose à voir avec la façon dont le magma est sorti du manteau, que se passe-t-il dans le manteau ? Comment leurs compositions ont-elles été modifiées ? »

READ  Le visage changeant de Mars (un documentaire de la NASA)

Il est difficile de répondre à ces questions, a déclaré Cottrell, mais la théorie principale est maintenant que le soufre oxydant peut oxyder le fer, ce que la collègue actuelle de Peter Buck étudie sous sa supervision au musée. Cette étude est un exemple du type de recherche que les chercheurs du musée entreprendront dans le cadre de la nouvelle initiative Our Unique Planet du musée, un partenariat public-privé, qui soutient la recherche sur certaines des questions les plus persistantes et les plus importantes sur ce qui rend la Terre spéciale. D’autres recherches porteront sur la source des océans liquides de la Terre et sur la façon dont les minéraux peuvent servir de modèles pour la vie.

Cette recherche a été soutenue par un financement de la Smithsonian Institution, de la National Science Foundation, du Department of Energy et de la Lyda Hill Foundation. Préféré

(Cette histoire n’a pas été éditée par l’équipe de Devdiscourse et a été automatiquement générée à partir d’un flux syndiqué.)