Connect with us

science

La NASA Hubble cherche un trou noir près de la Terre

Published

on

La NASA Hubble cherche un trou noir près de la Terre

Image du télescope spatial Hubble de l’amas d’étoiles globulaire, Messier 4. Cet amas est une collection dense de centaines de milliers d’étoiles. Les astronomes pensent qu’un trou noir de masse intermédiaire, pesant 800 fois la masse de notre Soleil, se cache, invisible, en son cœur. Crédit : ESA/Hubble, NASA, Eduardo Vitral (STScI)

Un amas central sombre se cache au centre d’une île étoilée scintillante

Les pièges gravitationnels dans l’espace, les trous noirs, existent en différentes tailles. Ou, plus exactement, des blocs différents, car ils sont tous très petits. la première[{ » attribute= » »>black hole ever discovered, in 1971, weighed in at 21 times our Sun’s mass. It was formed by the explosion and collapse of a star. Examples of a completely different class of black hole were identified in the 1960s-1970s. They weighed in at millions to billions of times our Sun’s mass. Like all supermassive black holes, those monsters dwell in the center of major galaxies.

So, black holes can be super-big or super-small. The missing link is an intermediate-mass black hole, weighing roughly 100 to 1,000 times our Sun’s mass. A handful have been found in other galaxies. Perhaps they are on the road to growing into supermassive black holes.

The cores of globular star clusters are hunting grounds for intermediate-mass black holes. They are smaller than galaxies and should have correspondingly smaller black holes. Over 150 of these snow-globe-shaped collections of hundreds of thousands of stars orbit our Milky Way galaxy, like artificial satellites whirling around Earth. Searches for intermediate-mass back holes in these clusters have been elusive. The suspected central black hole can’t be directly observed, of course. Astronomers gather circumstantial evidence by watching stars swarming around the black hole, like bees around a hive. Based on their speeds, the invisible central mass can be calculated using straightforward Newtonian laws of physics.

Tracking the stars is meticulous work that’s cut out for the Hubble Space Telescope’s sharp resolution and longevity. Astronomers looking through over a decade of Hubble observations of the nearby globular star cluster Messier 4 calculated there is a very dense central object of about 800 solar masses. It is so compact, the observations tend to rule out alternative theories as to what’s happening in the heart of the cluster.


Il s’agit d’une simulation des mouvements d’étoiles autour d’un trou noir présumé au cœur de l’amas globulaire M4. Il est basé sur le « HST Heritage Survey of Globular Clusters: Ultraviolet Spotlight on Their Population and Composition », qui inclut la cinétique interne des amas d’étoiles. En zoomant sur M4, le centre de masse, où se trouve le trou noir suspecté, est marqué d’un « X » rouge. Le rayon du cercle rouge est légèrement inférieur à 1[{ » attribute= » »>light-year across. It is the sphere of influence of the putative intermediate-mass black hole. Estimated to be 800 solar masses, the black hole has an event horizon that is a little more than half the diameter of our moon. The sphere of influence of the black hole is the region where its gravitational potential dominates over the gravitational potential of the starfield. It is a region where stellar motions are significantly affected by the black hole’s gravitational pull. Only Hubble’s sharp resolution can plot this motion over more than a decade of observing. The fastest moving stars in this video are not in the cluster, but are much closer to us, in the foreground of Milky Way stars. Credit: NASA, ESA, Mattia Libralato (AURA/STScI for ESA)

Hubble Space Telescope Hunts for Intermediate-Sized Black Hole Close to Home

Astronomers using NASA’s Hubble Space Telescope have come up with what they say is some of their best evidence yet for the presence of a rare class of “intermediate-sized” black hole that may be lurking in the heart of the closest globular star cluster to Earth, located 6,000 light-years away.

Like intense gravitational potholes in the fabric of space, virtually all black holes seem to come in two sizes: small and humongous. It’s estimated that our galaxy is littered with 100 million small black holes (several times the mass of our Sun) created from exploded stars. The universe at large is flooded with supermassive black holes, weighing millions or billions of times our Sun’s mass and found in the centers of galaxies.

A long-sought missing link is an intermediate-mass black hole, weighing in somewhere between 100 and 100,000 solar masses. How would they form, where would they hang out, and why do they seem to be so rare?

Astronomers have identified other possible intermediate-mass black holes through a variety of observational techniques. Two of the best candidates — 3XMM J215022.4−055108, which Hubble helped discover in 2020, and HLX-1, identified in 2009, reside in dense star clusters in the outskirts of other galaxies. Each of these possible black holes has the mass of tens of thousands of suns, and may have once been at the centers of dwarf galaxies. NASA’s Chandra X-ray observatory has also helped make many possible intermediate black hole discoveries, including a large sample in 2018.

Looking much closer to home, there have been a number of suspected intermediate-mass black holes detected in dense globular star clusters orbiting our Milky Way galaxy. For example, in 2008, Hubble astronomers announced the suspected presence of an intermediate-mass black hole in the globular cluster Omega Centauri. For a number of reasons, including the need for more data, these and other intermediate-mass black hole findings still remain inconclusive and do not rule out alternative theories.

Hubble’s unique capabilities have now been used to zero in on the core of the globular star cluster Messier 4 (M4) to go black-hole hunting with higher precision than in previous searches. “You can’t do this kind of science without Hubble,” said Eduardo Vitral of the Space Telescope Science Institute in Baltimore, Maryland, lead author on a paper published today (May 23, 2023) in the Monthly Notices of the Royal Astronomical Society.

Vitral’s team has detected a possible intermediate-mass black hole of roughly 800 solar masses. The suspected object can’t be seen, but its mass is calculated by studying the motion of stars caught in its gravitational field, like bees swarming around a hive. Measuring their motion takes time, and a lot of precision. This is where Hubble accomplishes what no other present-day telescope can do. Astronomers looked at 12 years’ worth of M4 observations from Hubble and resolved pinpoint stars.

His team estimates that the black hole in M4 could be as much as 800 times our Sun’s mass. Hubble’s data tend to rule out alternative theories for this object, such as a compact central cluster of unresolved stellar remnants like neutron stars, or smaller black holes swirling around each other. 

“We have good confidence that we have a very tiny region with a lot of concentrated mass. It’s about three times smaller than the densest dark mass that we had found before in other globular clusters,” said Vitral. “The region is more compact than what we can reproduce with numerical simulations when we take into account a collection of black holes, neutron stars, and white dwarfs segregated at the cluster’s center. They are not able to form such a compact concentration of mass.”  

A grouping of close-knit objects would be dynamically unstable. If the object isn’t a single intermediate-mass black hole, it would require an estimated 40 smaller black holes crammed into a space only one-tenth of a light-year across to produce the observed stellar motions. The consequences are that they would merge and/or be ejected in a game of interstellar pinball.  

“We measure the motions of stars and their positions, and we apply physical models that try to reproduce these motions. We end up with a measurement of a dark mass extension in the cluster’s center,” said Vitral. “The closer to the central mass, more randomly the stars are moving. And, the greater the central mass, the faster these stellar velocities.”

Because intermediate-mass black holes in globular clusters have been so elusive, Vitral cautions, “While we cannot completely affirm that it is a central point of gravity, we can show that it is very small. It’s too tiny for us to be able to explain other than it being a single black hole. Alternatively, there might be a stellar mechanism we simply don’t know about, at least within current physics.”

Reference: “An elusive dark central mass in the globular cluster M4” by Eduardo Vitral, Mattia Libralato, Kyle Kremer, Gary A Mamon, Andrea Bellini, Luigi R Bedin and Jay Anderson, 23 May 2023, Monthly Notices of the Royal Astronomical Society.
DOI: 10.1093/mnras/stad1068

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble and Webb science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

READ  Le lancement de Starlink met SpaceX sur la bonne voie pour effacer le record de missiles
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Trois lancements de missiles spéciaux à surveiller

Published

on

Trois lancements de missiles spéciaux à surveiller

Avez-vous vu le lancement du Starship de SpaceX plus tôt ce mois-ci ? Si cela a aiguisé votre appétit pour des lancements de fusées plus avancés, alors vous avez de la chance car cet été verra trois autres lancements de grande envergure.

Attendez-vous à une rare sortie de la fusée Falcon Heavy de SpaceX, au lancement de la première nouvelle fusée et à une tentative d’envoyer des astronautes plus loin dans l’espace que jamais depuis les missions Apollo de la NASA au début des années 1970.

Voici tout ce que vous devez savoir – et les dates de votre agenda.

Mardi 25 juin : Rare lancement et atterrissage tandem

Mission : SpaceX Falcon Heavy lance le satellite GOES-U de la NOAA.

Où regarder : SpaceX site Web ou Chaîne Youtube.

La dixième fusée SpaceX Falcon Heavy sera lancée aujourd’hui depuis le Kennedy Space Center en Floride, mettant en orbite un satellite météorologique NASA/NOAA GOES-U. GOES-U est unique en ce sens qu’il dispose d’un coronographe qui image mystérieusement l’atmosphère extérieure la plus chaude du Soleil, aidant ainsi les physiciens solaires à prédire avec plus de précision la météo spatiale.

Falcon Heavy est un lanceur lourd partiellement réutilisable, et le point culminant sera de voir ses deux propulseurs atterrir côte à côte sur deux plateformes côte à côte.

La NASA et SpaceX visent une fenêtre de lancement de deux heures qui s’ouvrira à 17 h 16 HNE le mardi 25 juin, mais gardez un œil sur SpaceX se nourrit de X Pour un timing précis.

Mardi 9 juillet : Une nouvelle fusée puissante décolle pour la première fois dans le ciel

Mission : Lancer pour la première fois la nouvelle fusée géante en Europe.

Où regarder : Agence spatiale européenne site Web ou Chaîne Youtube.

L’Agence spatiale européenne a confirmé le premier lancement de la sonde Ariane 6 depuis le port spatial européen en Guyane française.

Le nouveau lanceur lourd européen remplace Ariane 5 et dispose d’un étage supérieur rallumable, qui lui permettra de lancer plusieurs missions sur différentes orbites en un seul vol.

Vendredi 12 juillet : Polaris Dawn atteint 870 milles au-dessus de la Terre

Mission : SpaceX Falcon 9 lancera un équipage commercial de quatre astronautes privés dans l’espace à bord d’une capsule Dragon.

Où regarder : SpaceX site Web ou Chaîne Youtube.

Le programme Polaris est un partenariat avec SpaceX qui verra jusqu’à trois missions de vols spatiaux habités pour démontrer de nouvelles technologies. Elle est dirigée par Jared Isaacman, fondateur de Shift4 Payments, parti dans l’espace en tant que commandant de la mission SpaceX Inspiration4 en septembre 2021.

Cette première mission, « Polaris Dawn », verra le vaisseau spatial Dragon avec quatre astronautes (Isaacman, Scott Poteet, Sarah Gillies et Anna Menon) voler à 870 milles au-dessus de la Terre, le niveau le plus élevé depuis les missions Apollo sur la Lune.

Suis-moi Twitter/X Et Instagram.

Récupère mes livres Observation des étoiles en 2024, Programme d’observation des étoiles pour débutants Et Quand aura lieu la prochaine éclipse ?

Je vous souhaite un ciel clair et des yeux écarquillés.

READ  Lancement du vaisseau spatial européen Juice pour explorer les lunes de Jupiter
Continue Reading

science

Une source de cristaux liquides de paires de photons

Published

on

La conversion ascendante paramétrique spontanée (SPDC), en tant que source de photons intriqués, présente un grand intérêt pour la physique quantique et la technologie quantique, mais jusqu’à présent, elle ne peut être mise en œuvre que dans des matériaux solides. Des chercheurs de l’Institut Max Planck pour la science de la lumière (MPL) et de l’Institut Josef Stefan de Ljubljana, en Slovénie, ont démontré pour la première fois la SPDC dans un cristal liquide. Les résultats ont été récemment publiés dans natureouvrent la voie à une nouvelle génération de sources quantiques : efficaces et accordables par champs électriques.

Diviser un photon en deux est l’un des outils les plus utiles en photonique quantique. Il peut créer des paires de photons intriqués, des photons uniques, de la lumière compressée et des états photoniques encore plus complexes, essentiels aux technologies photoniques quantiques. Ce processus est connu sous le nom de conversion abaisseur automatique (SPDC).

Le SPDC est étroitement lié à la symétrie centrale. Il s’agit de la symétrie par rapport à un point – par exemple, un carré est symétrique au centre mais pas un triangle. Essentiellement, en divisant un photon en deux, le SPDC brise la symétrie centrale. Par conséquent, cela n’est possible que dans les cristaux dont la cellule primaire est asymétrique au centre. La SPDC ne peut pas se produire dans les liquides ou les gaz ordinaires, car ces matériaux sont isotropes.

Cependant, des chercheurs ont récemment découvert des cristaux liquides de structure différente, appelés cristaux liquides nématiques ferroélectriques. Bien qu’ils soient fluides, ces matériaux se caractérisent par une forte rupture de symétrie centrale. Leurs molécules sont allongées, asymétriques et surtout, elles peuvent être réorientées par un champ électrique externe. La réorientation des molécules modifie la polarisation des paires de photons générées, ainsi que le taux de génération. Avec un conditionnement approprié, un échantillon de ces matériaux peut constituer un dispositif extrêmement utile car ils produisent efficacement des paires de photons, peuvent être facilement réglés à l’aide d’un champ électrique et peuvent être intégrés dans des dispositifs plus complexes.

READ  Lancement du vaisseau spatial européen Juice pour explorer les lunes de Jupiter

À l’aide d’échantillons préparés à l’Institut Josef Stefan (Ljubljana, Slovénie) à partir de cristaux liquides nématiques ferroélectriques fabriqués par Merck Electronics KGaA, des chercheurs de l’Institut Max Planck pour la science de la lumière ont appliqué pour la première fois la SPDC à un cristal liquide. . L’efficacité de génération de photons intriqués est aussi élevée que celle des meilleurs cristaux non linéaires, tels que le niobate de lithium, d’épaisseur similaire. En appliquant un champ électrique de quelques volts seulement, ils ont pu activer et désactiver la génération de paires de photons, ainsi que modifier les propriétés de polarisation de ces paires. Cette découverte marque le début d’une nouvelle génération de sources lumineuses quantiques : flexibles, accordables et efficaces.

Continue Reading

science

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Published

on

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Illustration de la conception expérimentale générale du CREME exoMIP (Tsigaridis et al. en préparation), comme exemple de la façon dont l’exoMIP peut être structuré pour permettre une large participation communautaire. — Ph.EP astronomique

Alors que le télescope spatial James Webb commence à renvoyer des observations, il est plus important que jamais que les modèles climatiques exoplanétaires soient capables de prédire de manière cohérente et correcte l’observabilité des exoplanètes, de récupérer leurs données et d’interpréter les environnements planétaires à partir de ces données.

Les comparaisons entre modèles jouent un rôle crucial dans ce contexte, surtout à l’heure où peu de données sont disponibles pour valider les prédictions des modèles. Le groupe de travail CUISINES du Nexus for Exoplanet System Science (NExSS) de la NASA soutient une approche systématique pour évaluer les performances des modèles d’exoplanètes et fournit ici un cadre pour mener des projets d’intercomparaison de modèles d’exoplanètes organisés par la communauté (exoMIP).

Le cadre CUISINES adapte spécifiquement les pratiques de la communauté climatique terrestre pour répondre aux besoins des chercheurs exoplanétaires, y compris une gamme de types de modèles, de cibles planétaires et d’études spatiales paramétriques. Son objectif est d’aider les chercheurs à travailler collectivement, équitablement et ouvertement pour atteindre des objectifs communs.

Le cadre CUISINES repose sur cinq principes : 1) Définir à l’avance la ou les questions de recherche que exoMIP vise à aborder. 2) Créer une conception pilote qui maximise la participation de la communauté et en faire la publicité largement. 3) Planifiez un calendrier de projet qui permet à tous les membres d’exoMIP de participer pleinement. 4) Créer des produits de données à partir des résultats du modèle pour une comparaison directe avec les observations. 5) Créez un plan de gestion des données applicable aujourd’hui et évolutif à l’avenir.

READ  Les scientifiques disent que le réchauffement des océans rend la Terre moins lumineuse dans l'espace

Au cours des premières années de son existence, CUISINES fournit déjà un soutien logistique à 10 exoMIP et continuera à organiser des ateliers annuels pour approfondir les commentaires de la communauté et présenter de nouvelles idées d’exoMIP.

Linda E. Sohl, Thomas J. Fuchez, Sean Domagal-Goldman, Duncan A. Christie, Russell Detrick, Jacob Haque-Misra, C.E. Harman, Nicholas Iero, Nathan J. Mayne, Costas Tsigarides, Geronimo L. Villanueva, Ambre V. Jeune, Guillaume Chaverot

Commentaires : 14 pages, deux numéros
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP) ; Instruments et méthodes astrophysiques (astro-ph.IM)
Citer comme : arXiv:2406.09275 [astro-ph.EP] (ou arXiv :2406.09275v1 [astro-ph.EP] pour cette version)
Date de soumission
Qui : Linda Suhl
[v1] Jeudi 13 juin 2024, 16:14:22 UTC (903 Ko)
https://arxiv.org/abs/2406.09275
Astrobiologie

Continue Reading

Trending

Copyright © 2023