Connect with us

science

La première imagerie au monde d’atomes de césium radioactifs dans des échantillons environnementaux

Published

on

La première imagerie au monde d’atomes de césium radioactifs dans des échantillons environnementaux

L’analyse pionnière, réalisée par une équipe de chercheurs au Japon, en Finlande, en Amérique et en France, analysant les matériaux rejetés par les réacteurs FDNPP endommagés, révèle des informations importantes sur les défis environnementaux et de gestion des déchets radioactifs auxquels le Japon est confronté. L’étude est intitulée « « Détection d’atomes de césium radioactifs invisibles : présence d’un contaminant dans des microparticules riches en césium (CsMP) provenant de la centrale nucléaire de Fukushima Daiichi. » Il vient d’être publié dans Magazine des matières dangereuses.

Fusions de Fukushima Daiichi : un casse-tête technique et environnemental en cours

En 2011, après le tremblement de terre et le tsunami du Grand Tohoku, trois réacteurs nucléaires de la FDNPP ont connu une fusion en raison d’une perte d’alimentation de secours et de refroidissement. Depuis lors, de nombreux efforts de recherche se sont concentrés sur la compréhension des propriétés des débris de combustible (le mélange de combustible nucléaire fondu et de matériaux de structure) trouvés à l’intérieur des réacteurs endommagés. Ces débris doivent être soigneusement retirés et éliminés.

Vous voulez plus d’actualités ?

participation à Réseaux technologiquesUne newsletter quotidienne, fournissant chaque jour les dernières nouvelles scientifiques directement dans votre boîte de réception.

Abonnez-vous gratuitement

Cependant, de nombreuses incertitudes demeurent quant à l’état physique et chimique des débris de combustible, ce qui complique grandement les efforts de récupération.

Les tentatives pour comprendre la chimie du césium radioactif conduisent à des résultats qui sont les premiers du genre au monde

Une grande quantité d’éléments radioactifs a été libérée par les réacteurs endommagés de Fukushima Daiichi sous forme de particules. Les particules, appelées microparticules riches en Cs (CsMP), sont peu solubles, petites (moins de 5 µm) et ont une composition vitreuse.

READ  Une nouvelle recherche utilise une antenne « parabolique » coaxiale pour rechercher la matière noire

Professeur Satoshi Utsunomiya de l’Université de Kyushu, au Japon, a dirigé la présente étude. Il a expliqué que les CsMP « se formaient au fond des réacteurs endommagés lors des fusions, lorsque le combustible nucléaire en fusion heurtait le béton ».

Après la formation, de nombreux CsMP ont été perdus du confinement du réacteur dans le milieu environnant.

Comment l’image a-t-elle été créée ?

La caractérisation détaillée des CsMP a révélé des indices importants sur les mécanismes et l’étendue des effondrements. Cependant, malgré l’abondance du Cs dans les particules fines, l’imagerie directe au niveau atomique du Cs radioactif dans les particules s’est avérée impossible.

Professeur Loi Gareth« Cela signifie que nous manquons d’informations complètes sur la forme chimique du Cs dans les particules et les débris de carburant », a expliqué l’un des participants à l’étude de l’Université d’Helsinki.

« Bien que le Cs soit présent dans les particules à des concentrations raisonnablement élevées, il est souvent trop faible pour une imagerie réussie au niveau atomique à l’aide de techniques avancées de microscopie électronique », a poursuivi Utsunomiya. « Lorsque le Cs a été trouvé à une concentration suffisamment élevée, nous avons trouvé le faisceau d’électrons. détruit l’échantillon, rendant les données résultantes inutiles. Cependant, lors de travaux antérieurs de l’équipe utilisant un microscope électronique à balayage à angle sombre avancé à haute résolution (HR-HAADF-STEM), ils ont trouvé des inclusions d’un minéral appelé pollucite (zéolite). . Dans la nature, la pollution est généralement riche en aluminium.

La contamination trouvée dans les CsMP était clairement différente de celle trouvée dans la nature, indiquant qu’elle s’est formée dans des réacteurs. « Parce que nous savions que la plupart des Cs dans les CsMP provenaient de la fission, nous avons pensé que l’analyse de la contamination pourrait conduire aux toutes premières images directes d’atomes de Cs radioactifs », a poursuivi Utsunomiya.

READ  La génération LWBS : introduction de l'équilibre travail-vie personnelle dans la science

La zéolite peut devenir amorphe lorsqu’elle est exposée à une irradiation par un faisceau d’électrons, mais ces dommages sont liés à la composition de la zéolite, et l’équipe a découvert que certaines impuretés contaminants étaient stables dans le faisceau d’électrons.

Après avoir appris cela et sur la base de la modélisation, l’équipe s’est lancée dans une analyse minutieuse de Shahada Utsunomiya, une étudiante diplômée. Kanako MiyazakiEnfin, l’équipe a photographié les atomes radioactifs de Cs.

Utsunomiya a expliqué :

C’était très intéressant de voir le magnifique motif d’atomes de Cs dans la structure contaminée, environ la moitié des atomes de l’image correspondant à du Cs radioactif.

Il a poursuivi : « C’est la première fois que les humains imagent directement des atomes de Cs radioactifs dans un échantillon environnemental. La découverte de concentrations suffisamment élevées de Cs suffisamment radioactifs dans des échantillons environnementaux pour permettre une imagerie directe est inhabituelle et pose des problèmes de sécurité. S’il était passionnant de créer une image scientifique pour la première fois au monde, il est en même temps triste que cela n’ait été possible que grâce à un accident nucléaire.

Plus qu’une simple avancée dans le domaine de la photographie

Utsunomiya a souligné que les résultats de l’étude vont au-delà de la simple imagerie des atomes de Cs radioactifs : « Nos travaux mettent en évidence la composition des contaminants et l’hétérogénéité potentielle de la distribution du Cs au sein des réacteurs FDNPP et de l’environnement. »

Lu a en outre souligné l’importance : « Nous démontrons sans équivoque l’apparition de nouveaux C associés aux matériaux rejetés par les réacteurs FDNPP. La découverte de C contenant un contaminant dans les CsMP signifie probablement qu’ils restent également dans les réacteurs concernés. pris en compte dans les stratégies de démantèlement des réacteurs et de gestion des déchets.

READ  Des scientifiques de l'Université de la Sarre découvrent la production d'énergie humaine

Professeur agrégé émérite Bernd Grambo De Subatech, Université IMT Atlantique Nantes, il a ajouté : « Nous devons maintenant commencer également à examiner le comportement environnemental de la pollucite au Cs et ses impacts potentiels. Elle est susceptible de se comporter différemment des autres formes de retombées du Cs documentées à ce jour. mai L’impact sur la santé humaine doit être pris en compte. La réaction chimique du contaminant dans l’environnement et dans les fluides corporels est certainement différente des autres formes d’éléments radioactifs déposés.

Enfin, concernant l’importance de l’étude, le professeur Dr. a déclaré : Rod Ewing L’étudiant de l’Université de Stanford a souligné le besoin urgent de poursuivre les recherches pour éclairer les stratégies d’élimination des débris et de dépollution de l’environnement : « Une fois de plus, nous constatons que les efforts analytiques minutieux des scientifiques internationaux peuvent résoudre les mystères des accidents nucléaires, contribuant ainsi aux efforts de rétablissement à long terme. »

référence: Miyazaki K, Takehara M, Minomo K et al. Détection d’atomes de césium radioactifs « invisibles » : présence d’un contaminant dans des microparticules riches en césium (CsMP) de la centrale nucléaire de Fukushima Daiichi. J Hazard Mater. 2024;470:134104. est ce que je: 10.1016/j.jhazmat.2024.134104

Cet article a été republié ci-dessous Matiéres. Remarque : Le matériel peut avoir été modifié en termes de longueur et de contenu. Pour plus d’informations, veuillez contacter la source susmentionnée. Vous pouvez accéder à notre politique de communiqués de presse ici.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le tendon d’Achille déchiré montre une réparation plus rapide grâce à la thérapie par irradiation plasmatique

Published

on

Quel est le plus gros ligament du corps humain ? Certains pourraient être surpris qu’il s’agisse du tendon d’Achille. Bien qu’il soit également considéré comme le ligament le plus résistant, il peut se déchirer, bon nombre de ces blessures affectant les amateurs de sport dans la trentaine ou la quarantaine. Une intervention chirurgicale peut être nécessaire et une longue période de repos, d’immobilisation et de traitement peut être difficile à tolérer.

Dans le but de raccourcir le temps de récupération, une équipe de recherche dirigée par Katsumasa Nakazawa de la faculté de médecine de l’Université métropolitaine d’Osaka, étudiant diplômé du département d’orthopédie, professeur agrégé Hiromitsu Toyoda, professeur Hiroaki Nakamura et Jun-Seok Oh, diplômé professeur d’ingénierie, axé sur le plasma non thermique à pression atmosphérique comme méthode de traitement.

Cette étude est la première à montrer qu’une telle irradiation plasmatique peut accélérer la réparation des tendons. L’équipe a déchiré le tendon d’Achille chez des souris de laboratoire, puis l’a suturé. Pour un groupe de souris, la zone suturée a été irradiée avec un jet de plasma d’hélium. Le groupe exposé à l’irradiation plasmatique a montré une régénération tendineuse plus rapide et une force accrue deux, quatre et six semaines après la chirurgie par rapport au groupe non traité.

« Nous avons précédemment découvert que l’irradiation plasmatique non thermique à pression atmosphérique avait pour effet de favoriser la régénération osseuse. Dans cette étude, nous avons découvert que la technologie favorise également la régénération et la guérison des tendons, démontrant qu’elle a des applications dans un large éventail de domaines », professeur. » annonça Toyoda. « En combinaison avec les traitements tendineux existants, il devrait contribuer à une régénération tendineuse plus fiable et à une durée de traitement plus courte. »

READ  Un nouvel échafaudage d'hydrogel électriquement conducteur qui prend en charge la différenciation neuronale
Continue Reading

science

Préserver les « bastions de la nature » est essentiel pour stopper la perte de biodiversité, affirment les chercheurs

Published

on

Préserver les « bastions de la nature » est essentiel pour stopper la perte de biodiversité, affirment les chercheurs

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Au cœur naturel de Madidi, en Bolivie : de multiples juridictions avec les territoires indigènes de Tacana et Licos de Apolo au premier plan et de l’autre côté de la rivière Tuichi, se trouve le parc national de Madidi. Crédit image : Omar Torico (CC-BY 4.0, Creativecommons.org/licenses/by/4.0/)

× Fermer


Au cœur naturel de Madidi, en Bolivie : de multiples juridictions avec les territoires indigènes de Tacana et Licos de Apolo au premier plan et de l’autre côté de la rivière Tuichi, se trouve le parc national de Madidi. Crédit image : Omar Torico (CC-BY 4.0, Creativecommons.org/licenses/by/4.0/)

Selon John J. Robinson de la US Wildlife Conservation Society et ses collègues dans un article publié le 21 mai dans la revue en libre accès Journal PLoS Biologie.

Le Cadre mondial pour la biodiversité Kunming-Montréal (GBF), signé lors de la Conférence des parties à la Convention des Nations Unies sur la diversité biologique en 2022 à Montréal, a reconnu l’importance de protéger de vastes zones d’habitat naturel pour maintenir la résilience et l’intégrité des écosystèmes.

Pour stopper la perte de biodiversité, ces zones protégées et conservées doivent être situées aux bons endroits, reliées les unes aux autres et bien gérées. L’un des objectifs du Forum mondial de l’environnement est de protéger au moins 30 % des terres et des océans de la planète d’ici 2030, ce que l’on appelle l’objectif 30 x 30.

Pour atteindre les objectifs du GBF, les auteurs suggèrent de donner la priorité aux grandes zones protégées interconnectées, dotées d’une haute intégrité écologique, qui sont efficacement gérées et gouvernées équitablement. Ils soulignent l’importance de conserver les paysages à des échelles suffisamment grandes pour inclure les écosystèmes fonctionnels et la biodiversité qu’ils contiennent.

Dans de nombreux cas, cela nécessitera des groupes interconnectés d’aires protégées gérées ensemble. Une gouvernance efficace signifie reconnaître la diversité des parties prenantes et des titulaires de droits et partager équitablement les coûts et les avantages entre eux.

Les auteurs soutiennent que les zones protégées et les zones de conservation qui répondent aux quatre critères – qu’ils appellent « le cœur de la nature » – seront d’une importance disproportionnée pour la conservation de la biodiversité. Ils ont identifié des exemples de bastions naturels dans les zones forestières tropicales à forte biodiversité d’Afrique centrale et d’Amazonie.


Chimpanzés (Pan troglodytes troglodytes) à Nouabalé-Ndoki dans le cœur naturel trinational de la Sangha en Afrique centrale. Crédit image : Julie Larsen Maher (CC-BY 4.0, Creativecommons.org/licenses/by/4.0/)

× Fermer


Chimpanzés (Pan troglodytes troglodytes) à Nouabalé-Ndoki dans le cœur naturel trinational de la Sangha en Afrique centrale. Crédit image : Julie Larsen Maher (CC-BY 4.0, Creativecommons.org/licenses/by/4.0/)

En appliquant les quatre critères de cet article pour identifier les bastions de la nature dans le monde, les gouvernements et les défenseurs de l’environnement peuvent mieux coordonner leurs efforts pour faire face aux menaces qui pèsent sur la biodiversité, affirment les auteurs.

« Des zones naturelles – de vastes zones interconnectées, écologiquement intactes, bien gérées et équitablement gouvernées – ont été identifiées en Amazonie et en Afrique centrale. Cette approche offre un moyen efficace de conserver la biodiversité à l’échelle mondiale », ajoutent les auteurs.

Plus d’information:
Robinson JJ, Labruna D, O’Brien T, Klein PJ, Dudley N, Andelman SJ et al. (2024) Intensification de la conservation par zone pour mettre en œuvre l’objectif du cadre mondial de la biodiversité 30 x 30 : le rôle du cœur de la nature. PLoS Biologie (2024). est ce que je: 10.1371/journal.pbio.3002613

Informations sur les magazines :
PLoS Biologie


READ  Nous sommes presque proches de la plus longue éclipse lunaire partielle de ce siècle : comment la regarder
Continue Reading

science

Encore une fois, Einstein ! Les scientifiques découvrent où les « cascades » de matière tombent dans les trous noirs

Published

on

Encore une fois, Einstein !  Les scientifiques découvrent où les « cascades » de matière tombent dans les trous noirs

Les scientifiques ont confirmé, pour la première fois, que la structure de l’espace-temps elle-même fait un « plongeon final » au bord d’un trou noir.

Cette région de naufrage autour des trous noirs a été observée par des astrophysiciens en physique de l’Université d’Oxford et contribue à valider une prédiction clé de la théorie de la gravité d’Albert Einstein de 1915 : la relativité générale.

Continue Reading

Trending

Copyright © 2023