Connect with us

science

L’apprentissage automatique peut aider à résoudre d’anciens mystères de l’astrophysique

Published

on

L’apprentissage automatique peut aider à résoudre d’anciens mystères de l’astrophysique

Dans le jeu cosmique actuel de cache-cache, les scientifiques disposent d’un nouvel outil qui pourrait leur donner un avantage. Ministère de l’Énergie(DOE) Laboratoire de physique des plasmas à Princeton (PPPL) ont développé un programme informatique qui comprend… Apprentissage automatique Ce qui peut aider à identifier les blocs plasma Dans l’espace, on les appelle plasmides. Dans un nouveau développement, le programme a été formé à l’aide de données simulées.

Le programme examinera d’énormes quantités de données collectées par des engins spatiaux dans la magnétosphère, la région de l’espace extra-atmosphérique fortement affectée par le champ magnétique terrestre, et surveillera les signes de la présence de ces masses mystérieuses. Grâce à cette technique, les scientifiques espèrent en apprendre davantage sur les processus qui régissent la reconnexion magnétique, un processus qui se produit dans la magnétosphère et dans tout l’univers et qui peut endommager les satellites de communication et le réseau électrique.

Les scientifiques pensent que l’apprentissage automatique pourrait améliorer la capacité à trouver des plasmoïdes, aider à comprendre les bases de la reconnexion magnétique et permettre aux chercheurs de mieux se préparer aux conséquences des perturbations provoquées par la reconnexion.

« Pour autant que nous le sachions, c’est la première fois que quelqu’un utilise l’intelligence artificielle entraînée sur des données simulées pour rechercher des plasmoïdes », a-t-il déclaré. Kendra Bergstedtétudiant diplômé en Programme de Princeton en physique des plasmas, dont le siège est à PPPL. Bergstedt fut le premier auteur de papier Publier les résultats dans le Journal of Earth and Space Sciences. Ce travail combine l’expertise croissante du laboratoire en science informatique avec sa longue histoire d’exploration de la reconnexion magnétique.

Trouver un lien

Les scientifiques veulent trouver des moyens fiables et précis de détecter les plasmoïdes afin de pouvoir déterminer s’ils affectent la reconnexion magnétique, un processus constitué de lignes de champ magnétique qui se séparent, puis se rejoignent violemment et libèrent d’énormes quantités d’énergie. Lorsque cela se produit près de la Terre, la reconnexion peut déclencher une cascade de particules chargées tombant dans l’atmosphère, désactivant les satellites, les téléphones portables et le réseau électrique. « Certains chercheurs pensent que les plasmoïdes aident à une reconnexion rapide dans les grands plasmas », a-t-il déclaré. Hantao J.« Mais ces hypothèses n’ont pas encore été prouvées. »

READ  La manipulation des chromosomes dans les cellules vivantes révèle qu'ils sont fluides

Les chercheurs veulent savoir si les plasmoïdes peuvent modifier la vitesse à laquelle se produit la reconnexion. Ils veulent également mesurer la quantité d’énergie que la reconnexion donne aux particules de plasma. « Mais pour expliquer la relation entre les plasmoïdes et la reconnexion, nous devons savoir où se trouvent les plasmoïdes », explique Bergstedt. « Et c’est ce que l’apprentissage automatique peut nous aider à faire. »

Les scientifiques ont utilisé des données d’entraînement générées par ordinateur pour garantir que le logiciel puisse reconnaître une gamme de signatures plasmatiques. En règle générale, les plasmoïdes générés par des modèles informatiques sont des versions idéalisées basées sur des formules mathématiques avec des formes – telles que des cercles parfaits – qui n’apparaissent pas souvent dans la nature. Si le programme est entraîné uniquement à reconnaître ces versions parfaites, il risque de manquer celles qui ont d’autres formes. Pour éviter ces erreurs, Bergstedt et Gee ont décidé d’utiliser des données synthétiques intentionnellement incomplètes afin que le programme dispose d’une base de référence précise pour les études futures. « Comparé aux modèles mathématiques, le monde réel est compliqué », a déclaré Bergstedt. « Nous avons donc décidé de laisser notre logiciel apprendre en utilisant les données avec les fluctuations que vous obtiendriez dans les observations réelles, par exemple, au lieu de commencer nos simulations avec un courant complètement plat. plaque, nous donnons à notre plaque quelques vibrations.  » « Nous espérons que l’approche d’apprentissage automatique permettra plus de nuances qu’un modèle mathématique strict. » Tentatives précédentes Bergstedt et Gee ont écrit des programmes informatiques incluant des modèles de plasmoïdes plus idéalisés.

READ  Les rebondissements des rayons cosmiques à ultra haute énergie

Selon les scientifiques, l’utilisation de l’apprentissage automatique deviendra plus courante dans la recherche en astrophysique. « Cela peut être particulièrement utile lors d’extrapolations à partir d’un petit nombre de mesures, comme nous le faisons parfois lors de l’étude de la reconnexion », a déclaré Ji. « La meilleure façon d’apprendre à utiliser un nouvel outil est de l’utiliser réellement. Nous ne voulons pas. rester à l’écart et rater l’occasion. »

Bergstedt et Gee prévoient d’utiliser le programme de détection de plasmoïdes pour examiner les données collectées par la mission Magnetic Multiscale (MMS) de la NASA. Lancé en 2015 pour étudier la reconnexion, MMS se compose de quatre vaisseaux spatiaux volant en formation à travers le plasma dans la queue magnétique, la région de l’espace orientée à l’opposé du Soleil et contrôlée par le champ magnétique terrestre.

La queue magnétique est un endroit idéal pour étudier la reconnexion car elle allie accessibilité et taille. « Si nous étudions la reconnexion en observant le Soleil, nous ne pouvons prendre des mesures qu’à distance », a déclaré Bergstedt. « Si nous observions la reconnexion en laboratoire, nous pourrions placer nos instruments directement dans le plasma, mais les volumes de plasma seraient plus petits que ceux que l’on trouve normalement dans l’espace. » L’étude de la reconnexion dans la queue magnétique est un compromis idéal. « Il s’agit d’un vaste plasma naturel que nous pouvons mesurer directement avec un vaisseau spatial qui le traverse », a déclaré Bergstedt.

Alors que Bergstedt et Gee travaillent à améliorer le programme de détection des plasmoïdes, ils espèrent franchir deux étapes importantes. La première consiste à exécuter une procédure appelée adaptation de domaine, qui aidera le programme à analyser des ensembles de données qu’il n’a jamais rencontrés auparavant. La deuxième étape consiste à utiliser le logiciel pour analyser les données du vaisseau spatial MMS. « La méthodologie que nous avons démontrée est principalement une preuve de concept car nous ne l’avons pas optimisée de manière approfondie », explique Bergstedt. « Nous voulons que le modèle fonctionne mieux qu’il ne le fait actuellement, commencer à l’appliquer à des données réelles et ensuite partir de là ! »

READ  L'Agence japonaise d'exploration aérospatiale et le Lunar Cruiser de Toyota sont désormais un jouet Transformers

Cette recherche a été soutenue par le ministère de l’Énergie Science de l’énergie de fusion programme sous contrat DE-AC0209CH11466, par la NASA sous subventions NNH15AB29I et 80HQTR21T0105, et par une bourse de recherche supérieure de la National Science Foundation sous subvention DGE-2039656.

Le laboratoire de physique de Princeton maîtrise le plasma, le quatrième état de la matière, pour résoudre certains des défis scientifiques et technologiques les plus difficiles au monde. Notre laboratoire est situé sur le campus Forrestal de l’Université de Princeton à Plainsboro, dans le New Jersey, et nos recherches stimulent l’innovation dans une gamme d’applications, notamment l’énergie de fusion, la fabrication à l’échelle nanométrique, les matériaux et dispositifs quantiques et la science de la durabilité. L’université exploite un laboratoire pour l’Office of Science du Département américain de l’énergie, le plus grand partisan de la recherche fondamentale en sciences physiques du pays. Je sens la chaleur à l’intérieur https://energy.gov/science Et http://www.pppl.gov.

/version générique. Ce matériel provenant de l’organisation/des auteurs d’origine peut être de nature chronologique et a été édité pour des raisons de clarté, de style et de longueur. Mirage.News ne prend pas de position ou de parti d’entreprise, et toutes les opinions, positions et conclusions exprimées ici sont uniquement celles des auteurs. Vue complète ici.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Un chercheur développe une méthode pour convertir la chaleur en énergie pour les engins spatiaux

Published

on

Un chercheur développe une méthode pour convertir la chaleur en énergie pour les engins spatiaux

La source d’énergie développée par Yi Cheng, professeur à la Northeastern University, utilisera la chaleur perdue générée par les équipements spatiaux et la lumière du soleil qui n’atteint pas la Terre.

Le tir à la tête de Ye Cheng.
Yi Cheng, professeur adjoint de génie mécanique et industriel, mène des recherches sur le toit de Snell Engineering le 7 juin 2021. Photo : Robbie Wallau/Northeastern University

Un chercheur de la Northeastern University développe un dispositif qui capte la chaleur perdue des équipements spatiaux et la lumière solaire réfléchie et la transforme en source d’énergie pour les vaisseaux spatiaux et les rovers martiens de l’US Air Force.

« Même si cela ne peut fournir que 10 à 15 % d’énergie de secours pour l’électronique, nous pouvons prolonger la durée de vie de l’électronique et du vaisseau spatial », dit-il. Yi Chengprofesseur agrégé de génie mécanique et industriel et directeur du Nanoscale Energy Laboratory de Northeastern.

Cheng travaillera sur le dispositif thermique en collaboration avec Faraday Technology, une société basée dans l’Ohio spécialisée dans le développement de technologies d’ingénierie électrochimique appliquée pour le gouvernement américain et les clients commerciaux.

« Notre objectif est de concevoir un absorbeur et un émetteur thermique hautes performances capables d’absorber, de convertir et d’émettre de l’énergie à la longueur d’onde souhaitée », explique Cheng.

Il affirme que cette technologie serait adaptée aux voyages spatiaux à court et à long terme, notamment à une utilisation sur la Lune, sur Mars ou même sur des satellites lancés depuis notre galaxie.

Au cours des dernières années, Cheng a développé des matériaux pour la récupération et le stockage de l’énergie, les déchets d’énergie et les nanomatériaux.

READ  Les planètes semblables à la Terre peuvent résister à des températures et à des conditions extrêmes

Il affirme que la principale source d’énergie dans l’espace est généralement le soleil, avec des panneaux solaires haute performance convertissant la lumière du soleil en énergie pour alimenter les équipements spatiaux.

La source d’énergie développée par Cheng utilisera la chaleur perdue générée par les équipements spatiaux et dissipée dans l’espace, ainsi que la lumière du soleil qui n’atteint pas la Terre et est réfléchie par l’atmosphère.

Cheng affirme que les engins spatiaux et les équipements spatiaux doivent fonctionner dans des conditions extrêmes : des températures extrêmement basses (généralement moins 554 degrés Celsius ou moins 270 degrés Celsius) et un vide quasi total. De plus, la conduite d’engins spatiaux nécessite des ressources énergétiques.

« Nous ne pouvons pas simplement libérer un autre réservoir d’oxygène [for example] « Pour voyager, explique Cheng.

Les appareils électroniques fonctionnant sur des vaisseaux spatiaux ou sur des surfaces à haute température produiront un rayonnement thermique, ou lumière infrarouge, invisible à l’œil nu mais pouvant être détecté comme une sensation de chaleur sur la peau, explique Cheng. Cette chaleur se dissipera dans l’espace et sera perdue.

La chaleur résiduelle existe presque partout, y compris sur Terre, explique Cheng. Par exemple, un moteur chaud ou un four chauffé à haute température dissipe également une partie de cette chaleur.

Cheng affirme que la récupération de cette énergie a été étudiée au cours des dernières décennies et que son équipe appliquera des techniques récemment développées dans la conception de son système thermique.

Premièrement, les chercheurs testeront différents matériaux et surfaces artificiels – respectivement appelés métamatériaux et métasurfaces – afin d’utiliser l’absorbeur de chaleur proposé. Les métamatériaux ont certaines propriétés que l’on ne remarque pas dans les matériaux naturels. Ils n’existent pas naturellement sur Terre, ils doivent donc être fabriqués à l’échelle nanométrique en laboratoire, explique Cheng.

READ  L'Agence japonaise d'exploration aérospatiale et le Lunar Cruiser de Toyota sont désormais un jouet Transformers

Selon Cheng, le problème avec les matériaux courants est qu’ils n’ont pas de propriétés d’absorption ou d’émission élevées aux longueurs d’onde requises pour l’énergie infrarouge. Cheng dit que la longueur d’onde de la lumière infrarouge se situe entre 1,5 et 2,5 micromètres, ce qui est environ 12 à 24 fois inférieur au diamètre d’un cheveu humain.

«Cela nécessite donc un travail théorique et expérimental de la part de notre groupe», dit-il. « En fait, mes intérêts de recherche se concentrent sur le réglage actif et dynamique des propriétés thermiques, rayonnantes et optiques. [of materials] ». »

« Nous devons également équilibrer le poids et le coût », explique Cheng. « Nous devons équilibrer beaucoup de choses. Ainsi, étant donné le choix limité de matériaux utilisés dans l’espace, cela nous a amené à réfléchir à l’utilisation de la nanotechnologie pour concevoir des matériaux fonctionnels en tant que dispositif thermique. »

Il affirme que même si la nanotechnologie, ou les nanomatériaux, coûte cher, elle fonctionne très bien. Sans nanotechnologie, il est impossible d’absorber des longueurs d’onde spécifiques dans des conditions extrêmes.

Cheng affirme que les scientifiques utilisent des matériaux résistants à la chaleur pour fabriquer des nanomatériaux, qui sont stables, ont un point de fusion élevé dépassant 2 700 degrés (ou 1 500 degrés Celsius) et une longue durée de vie.

Un bon candidat est le tungstène, un métal rare avec les points de fusion et d’ébullition les plus élevés parmi les éléments connus sur Terre, explique Cheng. Cheng ne s’appuie pas uniquement sur ce matériau, mais lorsqu’il est combiné avec d’autres matériaux, il peut être utile dans les conditions difficiles de l’espace.

READ  Les rebondissements des rayons cosmiques à ultra haute énergie

Cheng passe cet été en tant que membre du corps professoral de la NASA au Glenn Research Center de Cleveland. Il mène des recherches sur la gestion de la chaleur pour la campagne Artemis qui vise à ramener les Américains sur la Lune en préparation de la première mission habitée vers Mars.

« J’espère vraiment que ce que je fais pour l’Air Force et la NASA contribuera en fait aux futurs projets de voyages spatiaux plus longs », a déclaré Cheng.

les sciences et la technologie

Histoires modernes

Actualités, découvertes et analyses du monde entier

Continue Reading

science

Regardez la lune recouvrir l’étoile géante bleue Spica le 13 juillet

Published

on

Regardez la lune recouvrir l’étoile géante bleue Spica le 13 juillet

L’un des événements les plus intéressants de l’astronomie optique, et certainement le plus rapide, se produit lorsque la Lune éclipse une étoile. Le bord de la lune se rapproche, semble appuyer dessus pendant plusieurs secondes, puis l’étoile disparaît soudainement ! Il réapparaît à la même vitesse sur la face cachée de la Lune jusqu’à une heure ou plus plus tard.

Le samedi 13 juillet, toute personne disposant d’un télescope et d’un ciel dégagé devrait se concentrer sur la lune de ce soir-là, juste après son premier quartier (éclairée à 52 %). À ce moment-là, la Lune passera devant l’étoile de première magnitude Cygnus Spongiosa vue d’Amérique du Nord.

Continue Reading

science

enfin! Les astronautes peuvent désormais boire leur propre urine lors d’une sortie dans l’espace, grâce à un nouvel appareil intelligent

Published

on

enfin!  Les astronautes peuvent désormais boire leur propre urine lors d’une sortie dans l’espace, grâce à un nouvel appareil intelligent

Sortir de la Station spatiale internationale (ISS) est déjà un véritable défi sans avoir à se soucier des appels de la nature à mi-chemin d’une sortie dans l’espace. Aujourd’hui, les scientifiques affirment avoir mis au point une nouvelle façon de capturer l’urine des astronautes et de la recycler en eau potable en quelques secondes. minutes.

Pendant des années, lors de sorties dans l’espace autour de la Station spatiale internationale, les astronautes se soulageaient en utilisant des couches jetables à l’intérieur de leurs combinaisons spatiales, connues sous le nom de Des vêtements avec une absorption maximale (MAG). Ces vêtements, conçus pour la première fois en Début des années 1980Il collecte et stocke l’urine, permettant ainsi aux astronautes de « partir » en mouvement. Mais comme les sorties dans l’espace peuvent parfois prendre jusqu’à huit heures, les appareils MAG peuvent mettre les astronautes physiquement mal à l’aise. Risque d’irritation et d’infection cutanée.

Continue Reading

Trending

Copyright © 2023