Connect with us

science

Le télescope spatial Spitzer « voit » l’épave de deux planètes qui se sont écrasées l’une contre l’autre

Published

on

Le télescope spatial Spitzer « voit » l’épave de deux planètes qui se sont écrasées l’une contre l’autre

Le télescope spatial Spitzer n’est peut-être pas aussi connu que les télescopes Hubble ou même les télescopes James Webb, mais c’est encore une découverte récente majeure qui pourrait fournir plus d’indices sur la façon dont le système solaire a commencé.

(Photo : Getty Images)
collision d’exoplanètes

selon univers aujourd’hui, Spitzer a pu détecter un champ de débris de deux planètes qui sont entrées en collision dans un système stellaire situé à 329 années-lumière de la Terre. Ces deux exoplanètes, selon les astronomes, ont produit des nuages ​​de poussière que Spitzer a pu détecter via un rayonnement infrarouge.

Les astronomes ont publié leurs découvertes dans Revue d’Astrophysique. Dans ce document, ils rapportent comment les disques de débris poussiéreux entourant les deux exoplanètes en collision leur permettent de « regarder en arrière dans le temps » et d’apprendre comment les planètes se sont formées dans notre système solaire il y a des milliards d’années. C’était la déclaration de l’astronome Kate Su de l’Université de l’Arizona, qui était l’auteur principal de l’étude.

Des observations comme celle-ci sont importantes pour les scientifiques qui étudient les exoplanètes et autres systèmes stellaires. En effet, la formation planétaire, bien que déjà connue pour être commune dans tout l’univers, reste largement entourée de mystère.

Mais avec les goûts du télescope spatial Spitzer (ainsi que d’autres observatoires Comme le télescope ALMA au Chili), ces systèmes solaires lointains très similaires au nôtre peuvent être observés un peu plus en détail pour voir le processus exact de formation des planètes en action. En dehors de cela, Sue émet également l’hypothèse qu’en observant les collisions d’exoplanètes, les scientifiques peuvent déterminer la fréquence des planètes rocheuses comme la Terre qui se forment en dehors du voisinage solaire de l’humanité.

READ  Deux façons de les créer et de diriger leur mouvement

Comment le télescope spatial Spitzer a-t-il découvert le champ de débris ?

HD 166191 est déjà sous observation depuis 2015. En 2019, les astronomes ont examiné de près le jeune système stellaire plus de 100 fois, concluant qu’il est encore trop jeune pour avoir des exoplanètes – sans parler des planètes rocheuses semblables à la Terre. Cependant, ils ont émis l’hypothèse que les soi-disant formes planétaires (essentiellement les éléments constitutifs des planètes elles-mêmes) orbitent en réalité autour de l’étoile avec les planètes naines.

Lire aussi : La «  première lumière  » du télescope spatial James Webb de la NASA montre que l’image capturée JWST est toujours incomplète

Mais ces corps célestes sont trop éloignés et trop petits pour être vus avec des télescopes. C’est jusqu’à ce qu’ils produisent suffisamment de nuages ​​de poussière spatiale en raison des collisions constantes, que les scientifiques utilisant Spitzer ont pu détecter en lumière infrarouge.

poussière spatiale

(Photo : Getty Images)
poussière spatiale

Ils notent qu’il y a une augmentation notable de la luminosité de HD 166191, ce qui indique la présence d’une énorme quantité de poussière autour de l’étoile. Puis, lorsqu’ils ont émis l’hypothèse que pour que la collision produise autant de poussière visible dans l’infrarouge, elle devait provenir de deux exoplanètes naines entrant en collision l’une avec l’autre. Cela nécessiterait que deux planètes naines d’environ 310 miles de diamètre entrent en collision l’une avec l’autre lors d’un « événement catastrophique ».

Un aperçu du télescope spatial Spitzer

De nos jours, tout ce que vous entendez sur les télescopes spatiaux a à voir avec le nouveau télescope James Webb. Mais jamais le télescope Spitzersonner.

READ  Écoutez la nouvelle œuvre classique majeure consacrée aux lunes de Jupiter

Pour faire court, Spitzer a été lancé le 25 août 2003, dans le but de permettre aux scientifiques d’observer l’univers spécifiquement en lumière infrarouge, selon NASA. Ceci est très différent d’autres comme Webb ou même l’emblématique Hubble, et permet à Spitzer de regarder dans des régions de l’univers qui sont bien au-delà de la portée des télescopes optiques ordinaires.

Ces régions peuvent inclure des « pépinières solaires », ou essentiellement des systèmes de jeunes étoiles remplies de nuages ​​de poussière qui formeront des planètes des milliards d’années dans le futur. Spitzer peut également rechercher au centre des galaxies, ainsi que détecter des objets extrêmement froids dans l’espace tels que les étoiles naines brunes (étoiles qui n’ont pas brillé aussi brillamment au cours de leur vie), et même des molécules organiques qui pourraient indiquer la présence de vie extraterrestre .

Articles Liés: Le télescope James Webb de la NASA et la technologie proche infrarouge pour prendre de meilleures images que Hubble, Spitzer : qu’est-ce qui le rend si différent ?

Cet article appartient à Tech Times

Écrit par RJ Pierce

ⓒ 2021 TECHTIMES.com Tous droits réservés. Ne pas reproduire sans permission.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Expédition dans la tranchée d’Atacama : penser à Encelade et à Europe

Published

on

Expédition dans la tranchée d’Atacama : penser à Encelade et à Europe

Éponge des grands fonds – Schmidt Ocean Institute

L’Atacama, au nord du Chili, est le désert le plus ancien et le plus sec de la planète. Alors que l’activité tectonique a remodelé la forme et la disposition des terres émergées au cours des 150 derniers millions d’années, le désert d’Atacama est resté essentiellement à la même latitude. À l’extérieur, là où le désert rencontre la mer, le plateau continental d’Atacama est également resté relativement inchangé.

Lorsque les scientifiques ont commencé à étudier les micro-organismes vivant sur la côte d’Atacama, ils ont découvert plusieurs espèces anciennes, ce qui les a amenés à se demander si d’autres espèces, tout aussi anciennes, avaient été signalées dans la région. Les enquêtes sur ce que les pêcheurs locaux ont capturé dans leurs filets et les résultats des expéditions de recherche précédentes ont révélé des espèces d’invertébrés, telles que les brachiopodes, communément appelés fossiles vivants.

Le Dr Armando Azua Bustos du Centre d’astrobiologie (CAB), CSIC-INTA, en Espagne, et son équipe émettent l’hypothèse que le statut immuable de la région d’Atacama crée la possibilité d’écosystèmes entiers composés d’organismes fossiles vivants. À l’aide des capteurs du R/V Falkor (également) et d’instruments avancés comme le ROV SuBastian, l’équipe scientifique révélera si la zone contient des exemples d’autres espèces dont l’apparence est restée relativement inchangée depuis leur apparition dans les archives fossiles.

S’ils parviennent à trouver des écosystèmes similaires à ceux qui existaient il y a 150 millions d’années, ils pourraient obtenir des informations sur l’évolution de la vie sur Terre et, peut-être, des informations sur les écosystèmes potentiels des grands fonds marins qui pourraient exister sous la surface des lunes glacées Encelade et Europe.

READ  Le télescope de l'ESO a capturé une lueur rose dans le ciel visible

Comprendre les origines et l’évolution de la vie sur Terre suggère les conditions dans lesquelles la vie pourrait exister sur d’autres planètes et sur leurs lunes. Bien que nous n’ayons pas encore trouvé de preuves de vie sur d’autres planètes de notre système solaire, les scientifiques pensent que la vie pourrait être trouvée dans les océans sous la surface de lunes glacées comme Encelade et Europe. En recherchant des espèces anciennes dans la fosse d’Atacama, l’équipe étudiera des conditions similaires à celles trouvées sous la surface d’Europe et d’Encelade, suggérant quels types de biosignatures pourraient nous aider dans la recherche de la vie sur ces lunes glacées.

Parution complète

Astrobiologie

Membre de l’Explorers Club, ancien directeur de charge utile/astrobiologiste de la Station spatiale américaine, exo-équipes, journaliste, Violator Climber, synesthète, mélange Na’Vi-Jedi-Freman-Bouddhiste, ASL, vétéran de l’île Devon et du camp de base de l’Everest, (il/Il ) 🖖🏻

Continue Reading

science

🔭 Le télescope Webb a découvert la plus ancienne fusion de trous noirs connue « seulement » 740 millions d’années après le Big Bang.

Published

on

🔭 Le télescope Webb a découvert la plus ancienne fusion de trous noirs connue « seulement » 740 millions d’années après le Big Bang.
  • Le télescope James Webb a découvert deux galaxies en fusion et leurs énormes trous noirs lorsque l’univers avait 740 millions d’années.
  • L’un des trous noirs a une masse 50 millions de fois supérieure à celle du Soleil.
  • Ces résultats aident à comprendre comment les trous noirs massifs ont influencé l’évolution des galaxies depuis le début de l’univers.

Les trous noirs se sont développés rapidement au début de l’univers

Des trous noirs supermassifs ont été découverts dans la plupart des grandes galaxies de notre univers local, y compris la Voie Lactée. Leur masse est des millions ou des milliards de fois supérieure à celle du Soleil. Ces trous noirs ont probablement un impact majeur sur l’évolution de leurs galaxies. Cependant, les scientifiques ne savent toujours pas exactement comment ces trous noirs sont devenus si grands.

Aujourd’hui, grâce au télescope James Webb, il a été prouvé que deux galaxies et leurs énormes trous noirs ont fusionné alors que l’univers n’avait que 740 millions d’années, rapporte l’Agence spatiale européenne. Le fait que des trous noirs supermassifs aient été découverts dès le premier milliard d’années après le Big Bang suggère que leur croissance a dû se produire très rapidement et très tôt.

Il ne peut être vu qu’à l’aide du télescope Webb

Les trous noirs massifs en croissance active présentent des caractéristiques spectrales particulières que les astronomes peuvent reconnaître. Pour les galaxies très lointaines, comme celles de cette étude, ces signes ne peuvent être observés qu’à l’aide du télescope Webb.

« Nous avons trouvé des preuves de gaz très dense avec des mouvements rapides à proximité du trou noir, ainsi que de gaz chaud et hautement ionisé éclairé par un rayonnement énergétique que les trous noirs produisent généralement dans leurs anneaux d’accrétion », a expliqué l’auteur principal Hannah Opler du centre de recherche. Université de Cambridge au Royaume-Uni. « Grâce à la résolution sans précédent de ses capacités d’imagerie, Webb a également permis à notre équipe de séparer spatialement les deux trous noirs. »

READ  Deux façons de les créer et de diriger leur mouvement

L’équipe a découvert que la masse de l’un des trous noirs est 50 millions de fois celle du Soleil. « La masse de l’autre trou noir est probablement similaire, même si elle est difficile à mesurer car ce deuxième trou noir est enfoui dans un gaz dense », a expliqué Roberto Maiolino, membre de l’équipe de l’Université de Cambridge et de l’University College de Londres au Royaume-Uni.

« Nos résultats suggèrent que la fusion est une voie importante par laquelle les trous noirs peuvent se développer rapidement, même à l’aube cosmique », a expliqué Hannah. « Avec les autres découvertes de Webb sur les trous noirs massifs et actifs dans l’univers lointain, nos résultats montrent également que les trous noirs massifs façonnent l’évolution des galaxies depuis le début. »

Le télescope Webb est le télescope le plus grand et le plus puissant jamais envoyé dans l’espace et constitue un projet conjoint entre les États-Unis et l’Europe. L’univers est observé depuis un endroit situé à 1,6 million de kilomètres de la Terre.

LISA détectera les ondes gravitationnelles

Lorsque les deux trous noirs ont fusionné, ils ont créé des ondes gravitationnelles. De tels événements pourraient être détectés par les futurs observatoires d’ondes gravitationnelles, comme la prochaine mission LISA, récemment approuvée par l’Agence spatiale européenne (ESA), qui sera le premier observatoire spatial dédié à l’étude des ondes gravitationnelles.

Les ondes gravitationnelles sont des ondulations invisibles dans la structure de l’espace-temps, créées par le mouvement d’objets massifs. Ils traversent constamment la Terre inaperçus et sont provoqués par des événements violents tels que la collision de trous noirs et la fusion d’étoiles à neutrons.

READ  Le télescope de l'ESO a capturé une lueur rose dans le ciel visible

« Les résultats de Webb nous indiquent que les systèmes plus légers détectables par LISA devraient être beaucoup plus fréquents qu’on ne le pensait auparavant », a partagé Nora Luitzgendorf, scientifique principale du projet LISA de l’Agence spatiale européenne aux Pays-Bas. « Cela nous amènera probablement à ajuster nos modèles pour les taux LISA dans cette fourchette globale. Ce n’est que la pointe de l’iceberg. »

Mur
WALL-Y est un bot IA créé dans ChatGPT. Il en apprend davantage À propos de WALL-Y et de la manière dont nous le développons. Vous pouvez retrouver son actualité ici.
Vous pouvez discuter avec
MUR YGBT À propos de cet article d’actualité et de l’optimisme fondé sur des faits (Nécessite une version payante de ChatGPT.)

Conseils d’actualité : Thomas Ahlström

Continue Reading

science

La NASA découvre une planète semblable à la Terre à 40 années-lumière

Published

on

La NASA découvre une planète semblable à la Terre à 40 années-lumière

Elle est similaire à notre planète en taille et en distance (relative) de son soleil.

télescope de la NASA

Les télescopes de la NASA trouvent parfois les choses les plus intéressantes.

Y a-t-il de la vie ailleurs dans l’univers ? C’est une question à laquelle tout le monde, des scientifiques aux écrivains de science-fiction, a réfléchi, mais jusqu’à ce qu’un contact extraterrestre se produise, il restera probablement sans réponse. Cependant, il y a de fortes chances que si des extraterrestres ressemblant à des humains existent quelque part dans l’univers, ils ont probablement évolué sur une planète similaire à la Terre. (À moins que les pieuvres ne se révèlent être des extraterrestres. On ne sait jamais.) Ceci, à son tour, donne aux scientifiques observant l’espace certaines propriétés à rechercher.

Ne sauriez-vous pas que la NASA a récemment repéré quelque chose qui correspond à ce projet. Comme Robert Lea de LiveScience RapportsLa planète – connue sous le nom de Gliese 12b – est de taille similaire à la Terre et à Vénus et se trouve à une distance similaire de son étoile. Il n’est qu’à 40 années-lumière de nous, ce qui est relativement proche de l’univers, mais un peu plus loin en pratique. (Si vous avez regardé 3 Problème de corpsou lisez la trilogie sur laquelle il est basé, vous le savez probablement déjà.)

Bien que Gliese 12b soit de taille similaire à celle de la Terre – en réalité légèrement plus grande – l’étoile sur laquelle elle orbite est beaucoup plus petite que notre Soleil. L’étoile Gliese est une naine rouge, un type d’étoile qui n’émet pas autant de chaleur que celles de notre système solaire. Puisque Gliese 12b est plus proche de son étoile, elle recevra probablement une quantité de chaleur similaire.

READ  La récupération audacieuse des données sur la matière noire par la NASA

La NASA vient de réparer Voyager 1 à 15 milliards de kilomètres

« Il se trouve soit dans la zone habitable de son étoile, soit juste au bord de l’étoile, il pourrait donc être habitable », a déclaré la scientifique Larissa Palethorpe à Live Science. Cependant, une question a jusqu’à présent intrigué les scientifiques : s’il existe ou non une atmosphère sur Gliese 12b. Cela contribuerait également grandement à déterminer la probabilité d’une vie extraterrestre.

Continue Reading

Trending

Copyright © 2023