Connect with us

science

Les avantages des bactéries fixatrices d’azote pourraient aider les efforts pour faire pousser du sol sur Mars – ScienceDaily

Published

on

Les plants de luzerne cultivés dans des sols semblables à ceux de Mars poussent beaucoup plus lorsqu’ils sont inoculés avec des bactéries symbiotiques fixatrices d’azote que lorsqu’ils ne sont pas pollinisés. Franklin Harris et ses collègues de la Colorado State University aux États-Unis présentent ces résultats dans la revue Open Access UN DE PLUS Le 29 septembre 2021.

Alors que la population de la Terre augmente, les chercheurs étudient la possibilité de cultiver le sol martien, ou « rege ». Cependant, le régolithe manque de certains nutriments essentiels aux plantes, y compris certaines molécules contenant de l’azote dont les plantes ont besoin pour vivre. Par conséquent, l’agriculture sur Mars nécessitera des stratégies pour augmenter la quantité de composés azotés dans le régolithe.

Harris et ses collègues émettent l’hypothèse que les bactéries pourraient jouer un rôle rentable en rendant le sol martien plus fertile. Sur Terre, les bactéries du sol aident à convertir ou à « fixer » l’azote de l’atmosphère en molécules dont les plantes ont besoin. Certains de ces microbes ont des relations symbiotiques avec les plantes, fixant l’azote dans les nodules des racines des plantes.

Pour explorer un rôle possible des bactéries symbiotiques fixatrices d’azote dans l’agriculture astronomique, les chercheurs ont cultivé de la luzerne dans un régolithe artificiel qui correspond étroitement à Mars. Ils ont inoculé à certaines plantes le microbe Sinorhizobium meliloti, que l’on trouve couramment dans les nodules racinaires de la luzerne au sol. Des recherches antérieures ont montré que la luzerne peut pousser dans le régolithe, mais elle n’a pas exploré le greffage avec des fixateurs d’azote.

READ  L'excitation monte parmi les 400 000 personnes qui devraient assister à la prochaine tentative de lancement d'Artemis I

Les chercheurs ont découvert que la luzerne pollinisée a connu 75 % de croissance de racines et de pousses en plus par rapport à la luzerne non pollinisée. Cependant, le régolithe entourant les plantes inoculées n’a montré aucun signe de NH4 plus élevé – une molécule contenant de l’azote essentiel pour les plantes – par rapport au régolithe entourant les plantes non pollinisées.

Ces résultats indiquent que les microbes symbiotiques ont amélioré la croissance de la luzerne, mais n’ont pas entraîné une augmentation de la production de composés azotés qui pourraient hypothétiquement être utilisés par d’autres plantes poussant à proximité. Les chercheurs ont également cultivé de la luzerne dans du terreau et ont remarqué des différences dans la relation symbiotique lorsqu’ils ont comparé les plantes cultivées dans le gazon par rapport au sol.

Ces résultats suggèrent la possibilité qu’une symbiose de plantes et de bactéries fixatrices d’azote pourrait aider l’agriculture sur Mars. Les recherches futures pourraient continuer à explorer de telles relations avec d’autres cultures et à aborder les problèmes liés à la toxicité des plantes dans le régolithe.

Les auteurs ajoutent : « Cette étude montre qu’il a été démontré que la bactérie formatrice de nodules Sinorhizobium meliloti oscille dans le régolithe martien, améliorant considérablement la croissance de la luzerne (Melilotus officinalis) dans un essai en serre. Ce travail augmente notre compréhension de la façon dont les plantes- les interactions microbiennes contribuent aux efforts visant à favoriser la récupération des régolithes. Mars « .

Source de l’histoire :

Matériel fourni par Plus. Remarque : le contenu peut être modifié en fonction du style et de la longueur.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le rover Curiosity de la NASA a accidentellement découvert des cristaux de soufre pur sur Mars

Published

on

Le rover Curiosity de la NASA a accidentellement découvert des cristaux de soufre pur sur Mars

Des scientifiques de la NASA affirment que du soufre pur a été découvert sur Mars pour la première fois après que le rover Curiosity ait accidentellement découvert un amas de cristaux jaunes lors de son passage au-dessus d’un rocher. La zone semble pleine de soufre. C’est une découverte inattendue : alors que des minéraux contenant du soufre ont été observés sur la planète rouge, le soufre élémentaire n’a jamais été observé seul auparavant. « Le soufre ne se forme que dans une gamme étroite de conditions que les scientifiques n’ont pas liées à l’histoire de ce site », ont déclaré les scientifiques de la NASA. .

Le rover Curiosity a réussi à fendre la roche le 30 mai alors qu’il traversait une zone connue sous le nom de canal Gedes Valles, où des roches similaires ont été vues partout. On pense que le canal a été creusé il y a longtemps par l’eau et les coulées de débris. « Trouver un champ de pierres faites de soufre pur, c’est comme trouver une oasis dans le désert », a déclaré Ashwin Vasavada, scientifique du projet Curiosity. « Il ne devrait pas être là, alors maintenant nous devons l’expliquer. C’est la découverte de choses étranges et inattendues. rend l’exploration planétaire extrêmement passionnante.

Une roche sur laquelle Curiosity est passée s'est fissurée, révélant des cristaux de soufre jaunes

Programme NASA/JPL/Caltech/Cyberscience et sécurité

Après avoir repéré les cristaux jaunes, l’équipe a ensuite utilisé une caméra montée sur le bras robotique de Curiosity pour les examiner de plus près. Le rover a ensuite échantillonné une autre roche à proximité, où les morceaux de roche qu’il a brisés étaient trop fragiles pour être forés. Le rover Curiosity est équipé d’instruments qui lui permettent d’analyser la composition des roches et du sol, et la NASA affirme que le spectromètre à rayons X de particules alpha (APXS) a confirmé qu’il avait trouvé du soufre élémentaire.

READ  Les scientifiques ont découvert une protéine dans les mouches des fruits qui, selon de nombreux manuels, ne devrait pas être là
Continue Reading

science

Des signes de vie pourraient être trouvés près de la surface de deux lunes proches.

Published

on

Des signes de vie pourraient être trouvés près de la surface de deux lunes proches.

Les preuves s’accumulent selon lesquelles la vie pourrait théoriquement continuer à exister sur deux lunes actuellement en orbite autour de planètes de notre système solaire.Les scientifiques ont fait un certain nombre de découvertes qui suggèrent que la lune glacée de Jupiter, Europe, et la lune de Saturne, Encelade, contiennent les conditions nécessaires à la vie. Ces conditions incluent la production de quantités abondantes de Oxygène Sur les océans liquides de la surface et du sous-sol d’Europe sur les deux lunes. Le phosphore, élément vital à la vie, présente de nombreux bienfaits. est trouvé Dans les colonnes de glace et d’eau émises par Encelade.

Or, une récente expérience de la NASA a révélé que si la vie existe sur ces lunes, ses signes, tels que les molécules organiques telles que les acides aminés ou nucléaires, peuvent être détectés beaucoup plus près de la surface qu’on ne le pensait auparavant, malgré d’énormes niveaux de rayonnement. C’est une bonne nouvelle pour toutes les futures missions qui rechercheront des signes de vie partageant l’attraction gravitationnelle de notre Soleil, car les véhicules robotiques n’auront pas besoin de creuser aussi profondément pour les trouver.

« Sur la base de nos expériences, la profondeur d’échantillonnage « sûre » pour les acides aminés sur Europe est d’environ 8 pouces aux hautes latitudes de l’hémisphère tardif (l’hémisphère opposé à la direction du mouvement d’Europe autour de « Jupiter) dans la région où la surface n’a pas été détectée ». été très perturbé par les impacts de météorites. Dans un communiqué de presse« La détection des acides aminés sur Encelade ne nécessite pas d’échantillonnage souterrain ; ces molécules survivront à la désintégration radioactive n’importe où sur la surface d’Encelade à moins d’un dixième de pouce (moins de quelques millimètres) de la surface. »

READ  Nouveaux virus liés à la fois aux virus géants et aux virus de l'herpès

Pour arriver à cette conclusion, Pavlov et ses collègues ont pris des acides aminés et les ont mélangés avec de la glace ultra froide – 321 degrés Fahrenheit en dessous de zéro. D’autres échantillons ont été mélangés non seulement à de la glace mais aussi à de la poussière de silicate pour simuler la présence éventuelle de matière provenant de météorites ou des profondeurs de la Lune. Les échantillons, scellés dans des flacons sans air, ont été exposés aux rayons gamma, une forme de rayonnement dangereuse. Certains autres échantillons ont également testé l’effet des acides aminés s’ils étaient cultivés dans des bactéries mortes, simulant la possibilité d’une vie microscopique sur Encelade et Europe.

Les résultats ont été publiés dans la revue AstrobiologieL’étude a montré le taux de décomposition des acides aminés dans ces conditions, et il s’avère que ces acides sont capables de survivre suffisamment longtemps pour être surveillés par une mission d’atterrissage. Mais aucune mission de ce type n’est prévue pour l’instant pour aucun des deux satellites.

« La lenteur de la destruction des acides aminés dans les échantillons biologiques dans des conditions de surface similaires à celles d’Europe et d’Encelade renforce l’argument en faveur de futures mesures de détection de vie par des missions d’atterrissage sur Europe et Encelade », a déclaré Pavlov. « Nos résultats indiquent que les taux de décomposition des biomolécules organiques potentielles dans les régions riches en silice d’Europe et d’Encelade sont plus élevés que ceux de la glace pure, et par conséquent, les futures missions potentielles vers Europe et Encelade devraient être prudentes dans l’échantillonnage des sites riches en silice. sur les deux lunes.

READ  SpaceX a interrompu la 16e tentative de lancement record d'une fusée Falcon 9

Continue Reading

science

Concevoir des cellules pour diffuser leur comportement peut aider les scientifiques à étudier leur fonctionnement interne

Published

on

Concevoir des cellules pour diffuser leur comportement peut aider les scientifiques à étudier leur fonctionnement interne

Les vagues sont Répandu dans la nature et la technologieQu’il s’agisse de la montée et de la descente des marées océaniques ou du balancement d’un pendule d’horloge, les rythmes prévisibles des vagues créent un signal qui peut être facilement suivi et distingué des autres types de signaux.

Les appareils électroniques utilisent des ondes radio pour envoyer et recevoir des données, comme un ordinateur portable, un routeur Wi-Fi ou un téléphone mobile et une tour de téléphonie cellulaire. De même, les scientifiques peuvent utiliser un autre type d’onde pour transmettre un autre type de données : des signaux provenant de processus et de dynamiques invisibles qui sous-tendent la manière dont les cellules prennent leurs décisions.

je Biologiste synthétiqueEt le mien Groupe de recherche La technologie a été développée Il envoie une vague de protéines génétiquement modifiées Voyagez à travers la cellule humaine pour ouvrir une fenêtre sur les activités cachées qui fournissent de l’énergie aux cellules lorsqu’elles sont en bonne santé et qui nuisent aux cellules lorsqu’elles sont hors de contrôle.

Les ondes peuvent être modifiées pour transporter différents types d’informations, comme la radio FM et AM.

Les vagues sont un puissant outil d’ingénierie

Le comportement oscillatoire des ondes est l’une des raisons pour lesquelles elles constituent des motifs géométriques si puissants.

Par exemple, des changements contrôlables et prévisibles dans les oscillations des ondes peuvent être utilisés pour coder des données, telles que des informations audio ou vidéo. Dans le cas d Radio à chaque station Il se voit attribuer une onde électromagnétique unique qui oscille à sa propre fréquence. Ce sont les chiffres que vous voyez sur le cadran de la radio.

READ  Le GOES-U de la NOAA termine les tests environnementaux

Les scientifiques peuvent étendre cette stratégie aux cellules vivantes. Mon équipe l’a utilisé Des vagues de protéines Transformer la cellule en une station radio microscopique qui diffuse en temps réel des données sur son activité pour étudier son comportement.

Animation d'ondes cyan et magenta formant une spirale

Les protéines bactériennes MinD (cyan) et MinE (magenta) peuvent s’organiser en motifs hélicoïdaux.

Convertir les cellules en stations de radio

L’étude de l’intérieur des cellules nécessite un type d’onde capable de communiquer et d’interagir spécifiquement avec les mécanismes et composants cellulaires.

Alors que les appareils électroniques sont constitués de fils et de transistors, les cellules sont construites et contrôlées par divers éléments chimiques. On les appelle des protéinesLes protéines remplissent diverses fonctions à l’intérieur de la cellule, depuis l’extraction de l’énergie du sucre jusqu’à déterminer si la cellule doit croître ou non.

Les ondes protéiques sont généralement rares dans la nature, mais certaines bactéries génèrent naturellement des ondes de deux protéines appelées Esprit et pensée – Ils sont souvent appelés ensemble MinDE – pour les aider à se diviser. Mon équipe a découvert que l’introduction de MinDE dans des cellules humaines provoque la réorganisation des protéines en un éventail surprenant de… Vagues et motifs.

Les ondes protéiques MinDE à elles seules n’interagissent pas avec d’autres protéines dans les cellules humaines. Cependant, nous avons constaté que MinDE peut être Conçu facilement Interagir avec l’activité de protéines humaines spécifiques responsables de la prise de décisions concernant la croissance, la signalisation aux cellules voisines, le mouvement et la division.

La dynamique des protéines qui déterminent ces fonctions cellulaires est difficile à détecter et à étudier dans les cellules vivantes, car l’activité des protéines est généralement invisible, même aux microscopes de grande puissance. Perturber ces modèles protéiques il est dans L’essence de beaucoup Cancers et troubles de la croissance.

Nous avons modélisé les liens entre les ondes protéiques MinDE et l’activité des protéines responsables des processus cellulaires clés. Or, l’activité de ces protéines provoque des changements dans la fréquence ou l’amplitude de l’onde protéique, tout comme la radio AM/FM. À l’aide de microscopes, nous pouvons détecter et enregistrer les signaux uniques diffusés par des cellules individuelles, puis les décoder pour récupérer la dynamique de ces processus cellulaires.

Nous commençons tout juste à explorer la manière dont les scientifiques utilisent les ondes protéiques pour étudier les cellules. Si l’histoire des vagues dans la technologie est une indication, leur potentiel est énorme.

Cet article a été republié à partir de Conversation Sous licence Creative Commons. Lire Article original.

Conversation

Continue Reading

Trending

Copyright © 2023