Connect with us

science

Les récifs artificiels conçus par les ingénieurs du MIT pourraient protéger la vie marine et réduire les dégâts causés par les tempêtes

Published

on

Les magnifiques récifs coralliens noueux qui entourent les îles tropicales servent de refuge marin et de tampon naturel contre les mers agitées. Mais à mesure que les effets du changement climatique s’aggravent et que les récifs coralliens s’effondrent dans le monde entier, et que les événements météorologiques extrêmes deviennent plus fréquents, les communautés côtières deviennent de plus en plus vulnérables aux fréquentes inondations et à l’érosion.

L’équipe du MIT espère désormais fortifier les côtes avec des récifs « architecturaux » – des structures marines durables conçues pour imiter les effets des récifs coralliens naturels sur la résistance aux vagues tout en fournissant des enclaves aux poissons et autres espèces marines.

La conception du récif de l'équipe se concentre sur une structure cylindrique entourée de quatre segments en forme de gouvernail. Les ingénieurs ont découvert que lorsque cette structure résiste à une vague, elle brise efficacement la vague en jets turbulents qui finissent par dissiper la majeure partie de l’énergie totale des vagues. L’équipe a calculé que la nouvelle conception pourrait réduire l’énergie des vagues autant que les récifs artificiels existants, en utilisant dix fois moins de matériaux.

Les chercheurs prévoient de fabriquer chaque structure cylindrique à partir de ciment durable, qu'ils mouleront en un motif de « voxels » qui pourront être assemblés automatiquement et fourniront des enclaves aux poissons à explorer et à d'autres espèces marines où s'installer. Les cylindres peuvent être reliés pour former un long mur semi-perméable que les ingénieurs peuvent ériger le long du rivage, à environ 800 mètres du rivage. Sur la base des premières expériences de l'équipe avec des prototypes à l'échelle du laboratoire, les coraux artificiels peuvent réduire l'énergie des vagues entrantes de plus de 95 %.

«Ce sera comme un long brise-lames», déclare Michael Triantafilou, professeur Henry L. et Grace Doherty de sciences et de génie océaniques au Département de génie mécanique. « Si les vagues atteignent 6 mètres de haut en direction de la structure du récif, elles finiront par avoir moins d'un mètre de haut de l'autre côté. Cela tue donc l'effet des vagues, ce qui pourrait empêcher l'érosion et les inondations. »

Les détails de la conception des coraux artificiels sont rapportés aujourd'hui dans une étude parue dans la revue en libre accès. Association PNAS. Les co-auteurs du MIT Triantafyllou sont Edvard Ronglan SM '23 ; les étudiants diplômés Alfonso Parra Rubio, José del Huella Ferrandes et Erik Strand ; Les chercheuses Patricia Maria Stazato et Carolina Bastidas ; Professeur Neil Gershenfeld, directeur du Centre pour les atomes et les pièces ; Avec Alexis Oliveira da Silva de l'Institut Polytechnique de Paris, Dexia Fan de Westlake University et Jeffrey Geyer Jr. de Scinetics, Inc.

READ  Diffusion en direct de Mars par le vaisseau spatial de l'ESA interrompue par la pluie sur Terre

Profitez des perturbations

Certaines régions ont déjà créé des récifs coralliens artificiels pour protéger leurs côtes des tempêtes envahissantes. Ces structures sont généralement des navires coulés, des plates-formes pétrolières et gazières abandonnées et même des formations assemblées de béton, de métal, de pneus et de pierre. Cependant, il existe actuellement des variations dans les types de récifs artificiels existants et il n’existe aucune norme concernant la géométrie de ces structures. De plus, les conceptions déployées ont tendance à avoir une faible dissipation des ondes par unité de volume de matériau utilisé. Cela signifie qu’il faut une énorme quantité de matériaux pour décomposer suffisamment d’énergie des vagues afin de protéger adéquatement les communautés côtières.

Au lieu de cela, l’équipe du MIT a cherché des moyens de concevoir des récifs artificiels qui dissiperaient efficacement l’énergie des vagues en utilisant moins de matériaux, tout en offrant un refuge aux poissons vivant le long de tout littoral vulnérable.

« N'oubliez pas que les récifs coralliens naturels n'existent que dans les eaux tropicales », explique Triantafilou, directeur du MIT Sea Grant Program. « Nous ne pourrions pas avoir ces récifs, par exemple, dans le Massachusetts. Mais les récifs conçus ne dépendent pas de la température, ils peuvent donc être placés dans n'importe quelle eau, protégeant ainsi davantage de zones côtières. »

Ce nouvel effort est le résultat d'une collaboration entre des chercheurs du MIT Sea Grant, qui ont développé la conception hydrodynamique de la structure du récif, et des chercheurs du Center for Parts and Atoms (CBA), qui ont travaillé pour rendre la structure modulaire et facile à fabriquer. sur site. . La conception du récif corallien par l'équipe est née de deux problèmes apparemment sans rapport. Les chercheurs de l’ABC développaient des structures cellulaires ultralégères pour l’industrie aérospatiale, tandis que les chercheurs de Sea Grant évaluaient les performances des obturateurs anti-éruption dans les structures pétrolières offshore – des vannes cylindriques utilisées pour sceller les puits de pétrole et de gaz et empêcher leurs fuites.

READ  Latrines à civettes dans trois habitats dans un paysage dominé par le café dans le hotspot de la biodiversité des Ghâts occidentaux

Les tests de l'équipe ont montré que la disposition cylindrique de la structure génère une traînée importante. En d’autres termes, la structure semble particulièrement efficace pour dissiper les flux de pétrole et de gaz de grande puissance. Le même agencement, se demandaient-ils, pourrait-il dissiper un autre type d’écoulement, dans les vagues océaniques ?

Les chercheurs ont commencé à manipuler la structure globale dans les simulations d’écoulement d’eau, en ajustant leurs dimensions et en ajoutant des éléments spécifiques pour voir si et comment les vagues changeaient lorsqu’elles frappaient chaque conception de simulation. Ce processus itératif a finalement abouti à une géométrie raffinée : un cylindre vertical entouré de quatre longues bandes, chacune reliée au cylindre de manière à laisser de la place à l'eau pour s'écouler à travers la structure résultante. Ils ont découvert que cette configuration réfractait essentiellement toute énergie de vague entrante, provoquant l’enroulement de parties du flux induit par les vagues sur les côtés au lieu de s’effondrer vers l’avant.

« Nous profitons de ces turbulences et de ces jets puissants pour finalement dissiper l'énergie des vagues », explique Ferrandis.

Résistez aux tempêtes

Une fois que les chercheurs ont identifié la structure idéale pour la dissipation des vagues, ils ont fabriqué une version en laboratoire du récif corallien, façonnée à partir d’une série de structures cylindriques, qu’ils ont imprimées en 3D à partir de plastique. Chaque cylindre d'essai mesure environ 1 pied de large et 4 pieds de long. Ils ont assemblé un certain nombre de cylindres, chacun espacé d'environ un pied, pour former une structure en forme de clôture, puis l'ont descendu dans un réservoir à vagues au MIT. Ils ont ensuite généré des vagues de différentes hauteurs et les ont mesurées avant et après avoir traversé le récif artificiel.

« Nous avons vu les vagues diminuer considérablement, à mesure que les récifs coralliens détruisaient leur énergie », explique Triantafilou.

L'équipe a également étudié la possibilité de rendre les structures plus poreuses et plus adaptées à la pêche. Ils ont découvert qu’au lieu de fabriquer chaque structure à partir d’une feuille de plastique solide, ils pouvaient utiliser un type de ciment moins coûteux et plus durable.

READ  Ariane 6 : lancement d'EXOpod Nova depuis Exolaunch

« Nous avons travaillé avec des biologistes pour tester le ciment que nous avons l'intention d'utiliser. Il est sans danger pour la pêche et prêt à l'emploi », ajoute-t-il.

Ils ont identifié un modèle idéal de microstructures dans lesquelles le ciment peut être façonné, afin de fabriquer des récifs coralliens tout en créant des enclaves dans lesquelles les poissons peuvent vivre. Cette géométrie de voxel ressemble à des cartons d'œufs individuels, empilés bout à bout, et semble n'avoir aucun effet sur la capacité globale de dissipation des ondes de la structure.

« Ces axes maintiennent toujours une grande traînée tout en permettant au poisson de se déplacer », explique Ferrandis.

L’équipe fabrique actuellement des structures de voxels en ciment et les assemble dans des récifs conçus à l’échelle du laboratoire, qu’elle testera dans différentes conditions de vagues. Ils envisagent que la conception du voxel pourrait être modulaire, évolutive à n’importe quelle taille souhaitée et facile à transporter et à installer dans divers endroits extérieurs. « Nous simulons actuellement les modèles marins réels et testons le fonctionnement de ces modèles lorsque nous devrons éventuellement les déployer », explique Anjali Sinha, une étudiante diplômée du MIT qui a récemment rejoint le groupe.

À l’avenir, l’équipe espère travailler avec des villes balnéaires du Massachusetts pour tester les structures à une échelle pilote.

« Ces structures de test ne seront pas petites », souligne Triantafilou. « Il fera environ un mile de long, environ 5 mètres de haut, et coûtera environ 6 millions de dollars par mile. Ce n'est donc pas bon marché. Mais cela pourrait éviter des milliards de dollars de dégâts causés par les tempêtes. Et avec le changement climatique, la protection des côtes va devenir un gros problème. »

Ces travaux ont été financés en partie par la Defense Advanced Research Projects Agency des États-Unis.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Published

on

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Les chercheurs suggèrent que le Tyrannosaurus rex était peut-être 70 % plus lourd qu’on ne le pensait auparavant et 25 % plus long.

Le plus grand T. rex jamais trouvé vivant pourrait être beaucoup plus grand que le plus grand spécimen actuellement connu, puisqu’il pèse environ 15 tonnes au lieu de 8,8 tonnes et mesure 15 mètres de long au lieu de 12 mètres, selon l’étude.

De nombreux dinosaures plus grands appartenant à divers groupes ont été identifiés à partir d’un seul bon spécimen fossile.

Il est donc impossible de savoir si cet animal est un grand ou un petit exemplaire de cette espèce.

Les chercheurs soulignent que déterminer quel dinosaure était le plus grand, sur la base d’une poignée de fossiles, n’a pas beaucoup de sens.

Dans la nouvelle étude, le Dr Jordan Malone du Musée canadien de la nature à Ottawa, au Canada, et le Dr David Hone de l’Université Queen Mary de Londres, ont utilisé la modélisation informatique pour évaluer un groupe de dinosaures T. rex.

Ils ont pris en compte des facteurs tels que la taille de la population, le taux de croissance, la durée de vie moyenne et le caractère incomplet des archives fossiles.

« Notre étude suggère que pour les grands animaux fossiles tels que le T. rex, nous n’avons aucune idée, d’après les archives fossiles, de la taille absolue qu’ils ont pu atteindre », a déclaré le Dr Malone.

« C’est amusant de penser à un T. rex de 15 tonnes, mais les implications sont également intéressantes d’un point de vue biomécanique ou écologique. »

READ  Diffusion en direct de Mars par le vaisseau spatial de l'ESA interrompue par la pluie sur Terre

Le Dr Hohn a déclaré : « Il est important de souligner qu’il ne s’agit pas vraiment du T. rex, qui constitue la base de notre étude, mais que cette question s’applique à tous les dinosaures et à de nombreuses autres espèces fossiles.

« Se disputer sur « qu’est-ce qui est le plus gros ? » en se basant sur quelques squelettes n’a pas vraiment de sens. »

Le T. rex a été choisi pour le modèle car bon nombre de ses détails étaient déjà bien appréciés.

Le modèle est basé sur des modèles de crocodiles vivants, choisis en raison de leur grande taille et de leur relation étroite avec les dinosaures.

Les chercheurs ont découvert que les plus grands fossiles connus de T. rex se situent probablement dans le 99e centile, soit le 1 pour cent supérieur de la taille du corps.

Cependant, ils soulignent que pour trouver un animal parmi les 99,99 pour cent (un tyrannosaure sur dix mille), les scientifiques devraient fouiller des fossiles au rythme actuel pendant encore 1 000 ans.

Les estimations de taille sont basées sur un modèle, mais la découverte de géants d’espèces modernes suggère qu’il devait encore y avoir des dinosaures plus grands.

« Certains des os et morceaux isolés indiquent clairement des individus plus gros que les squelettes dont nous disposons actuellement », a déclaré le Dr Hoon.

Les résultats ont été publiés dans la revue Ecology and Evolution.

Continue Reading

science

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Published

on

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Un scientifique du Lawrence Berkeley National Laboratory travaille sur un dispositif de séparation lors d’une expérience. Crédit image : Laboratoire national Lawrence Berkeley

Une équipe de scientifiques et de chercheurs du Lawrence Berkeley National Laboratory en Californie a récemment annoncé une réalisation révolutionnaire : la création du Livemorium, ou élément 116, à l’aide d’un faisceau de particules de titane.

C’est la première fois qu’un hépatique est fabriqué de cette manière, rapprochant les chercheurs de l’insaisissable « îlot de stabilité », où les éléments très lourds sont censés avoir une durée de vie plus longue, ce qui les rend plus faciles à étudier. Plus important encore, c’est la première fois qu’un objet extrêmement lourd est fabriqué de cette manière par des humains.

Rainer Kröcken, directeur des sciences nucléaires au Berkeley Lab, a exprimé son optimisme quant à la découverte, soulignant la nature collaborative de l’expérience. Il a déclaré que la production de l’élément 120, la prochaine cible, prendrait beaucoup plus de temps mais semblait désormais possible. Annoncé lors de la conférence Nuclear Structure 2024, l’article sera bientôt disponible sur le référentiel de prépublications arXiv et sera soumis à la revue Physical Review Letters.

Utilisation innovante d’une poutre en titane pour créer l’élément 116
Dans leur expérience, les scientifiques ont utilisé un faisceau de titane-50, un isotope spécifique, pour générer du Livemorium, ce qui en fait l’élément le plus lourd créé à ce jour au laboratoire de Berkeley. Ce laboratoire a une riche histoire de découverte d’éléments, qui a contribué à l’identification de 16 éléments allant du technétium (43) au seaborgium (106).

READ  L'Agence japonaise d'exploration aérospatiale et le Lunar Cruiser de Toyota sont désormais un jouet Transformers

Jacqueline Gates, qui a dirigé le dernier effort, a exprimé sa confiance dans les résultats, notant que les chances que les résultats soient une anomalie statistique sont très faibles. Le processus impliquait de chauffer le titane à environ 3 000 °F (1 649 °C) jusqu’à ce qu’il se vaporise. L’équipe a ensuite bombardé le titane vaporisé avec des micro-ondes, en enlevant 22 électrons et en préparant les ions pour l’accélération dans un cyclotron de 88 pouces au laboratoire de Berkeley.

Les ions de titane accélérés sont dirigés vers une cible de plutonium, des milliards d’ions frappant la cible chaque seconde. Ce bombardement intense a finalement créé deux atomes de Livermorium sur une période de 22 jours. L’utilisation du titane à cette fin représente une nouvelle technologie pour synthétiser des éléments plus lourds, car les éléments précédents de cette gamme, de 114 à 118, avaient été synthétisés à l’aide d’un faisceau de calcium 48.

Jennifer Burr, physicienne nucléaire au groupe des éléments lourds du Berkeley Lab, a souligné l’importance de cette méthode. La production de l’élément 116 à partir de titane valide cette nouvelle approche, ouvrant la voie à de futures expériences visant à produire des éléments plus lourds, comme l’élément 120.

Trouver l’article 120
Le succès de la création de l’élément 116 a ouvert la voie au prochain objectif ambitieux de l’équipe : créer l’élément 120. S’il est atteint, l’élément 120 sera l’atome le plus lourd jamais créé et fera partie de « l’îlot de stabilité », un groupe théorique d’éléments super-lourds de qui devrait être plus long que ceux découverts jusqu’à présent.

READ  La fusée lunaire géante d'Artémis

Le laboratoire prévoit de commencer à tenter de créer l’élément 120 en 2025. Le processus devrait prendre plusieurs années, reflétant la complexité et les défis inhérents à cette recherche de pointe. Les physiciens explorent les limites du tableau périodique, s’efforçant de repousser les limites de la connaissance et de la compréhension humaines en explorant les limites de la stabilité atomique.

Cette réalisation majeure démontre non seulement la créativité des scientifiques du Berkeley Lab, mais ouvre également la voie à de futures découvertes dans le domaine des éléments super-lourds, qui pourraient ouvrir la voie à de nouvelles connaissances sur la nature fondamentale de la matière.

Retrouvez-nous sur YouTube

Participer

Continue Reading

science

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

Published

on

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

La directrice de l’Institut des sciences spatiales et cosmiques, la Dre Jennifer Lutz, a accepté la recommandation principale du groupe de travail sur les initiatives exoplanétaires stratégiques et a décidé de procéder à une étude à grande échelle des exoplanètes naines rocheuses de type M.

Le programme utilisera environ 500 heures du temps discrétionnaire du directeur sur le télescope spatial James Webb pour rechercher l’atmosphère de plus d’une douzaine de systèmes proches.

Près de 250 observations ultraviolettes en orbite avec le télescope spatial Hubble seront utilisées pour déterminer l’activité des étoiles hôtes. Les observations seront effectuées par une équipe de direction du Space Science Institute dirigée par le Dr Nestor Espinosa et soutenue par le Dr Hannah Diamond Lowe en tant qu’équipe adjointe.

L’Institut des sciences spatiales et cosmiques emploie également un comité consultatif scientifique externe pour donner des conseils sur tous les aspects du programme, y compris la sélection des cibles, la vérification des données et les interactions communautaires équitables. Les membres du comité consultatif scientifique seront représentatifs de la communauté exoplanétaire au sens large, couvrant un large éventail d’affiliations institutionnelles et d’étapes de carrière.

Le Space Science Institute annoncera bientôt la possibilité de soumettre des candidatures, y compris des auto-nominations. La contribution de la communauté sera sollicitée sur la liste des cibles ; Les plans d’observation seront publiés bien avant la date limite de GWebb IV.

Rapport du groupe de travail sur les initiatives exoplanétaires stratégiques avec le télescope spatial Hubble et le télescope spatial James Webb

READ  La fusée lunaire géante d'Artémis

Astrobiologie

Membre de l’Explorers Club, ancien gestionnaire de charge utile de la Station spatiale de la NASA/biologiste spatial, homme de plein air, journaliste, ancien grimpeur, synesthésie, mélange de Na’vi, Jedi, Freeman et bouddhiste, langue des signes américaine, camp de base de l’île Devon et vétéran de l’Everest, (il /lui) 🖖🏻

Continue Reading

Trending

Copyright © 2023