Connect with us

science

Les scientifiques découvrent un poisson qui « voit » avec sa peau « même après sa mort »

Published

on

Les scientifiques découvrent un poisson qui « voit » avec sa peau « même après sa mort »

Le poisson cochon qui vit dans les récifs coralliens observe lui-même les changements cuir Une nouvelle étude révèle que la couleur dépend de l’environnement dans lequel ils nagent et qu’ils perçoivent leur environnement grâce à des cellules spéciales sensibles à la lumière sur leur peau « même après leur mort ».

Recherche publiée dans la revue nature Cette semaine, notre compréhension du comportement et de l’évolution de ces choses s’améliore PoissonEt comment certains animaux sont capables de surveiller les changements de couleur de leur peau et de s’adapter rapidement.

« Il semble qu’ils observent leur changement de couleur », a déclaré Laurie Schweckert, co-auteur de l’étude.

« D’une certaine manière, ils peuvent dire à l’animal à quoi ressemble sa peau, car il ne peut pas se pencher pour regarder », a expliqué Sonke Johnson, un autre auteur de l’étude.

De nombreux poissons, notamment les calmars, les amphibiens, les reptiles et les poissons, ont la capacité naturelle de changer rapidement de couleur, cette caractéristique évoluant plusieurs fois chez de nombreuses espèces animales différentes.

Les chercheurs, notamment ceux de l’Université de Caroline du Nord à Wilmington aux États-Unis, ont déclaré que les créatures trouvent cette caractéristique utile pour s’adapter aux changements de températures environnementales, attirer des partenaires et se camoufler.

Les cellules de leur corps appelées chromophores, qui contiennent des pigments, de minuscules cristaux ou feuilles réfléchissantes, permettent à ces animaux de changer rapidement de couleur en quelques minutes ou moins.

Par exemple, les marsouins changent de couleur pour se camoufler des prédateurs ou pour des signaux sociaux.

Les poissons de récif se trouvent dans l’ouest de l’océan Atlantique, de la Caroline du Nord au Brésil, et sont célèbres pour leur peau décolorée.

READ  Le rover Persévérance marque la première année martienne sur la planète rouge

On sait qu’il passe du blanc au brun moucheté en quelques millisecondes pour se fondre dans le corail, le sable ou les rochers.

Pour ce faire, ils déplacent les pigments dans les cellules des chromatophores du corps pour révéler ou recouvrir le tissu blanc situé en dessous.

Cependant, on ne sait toujours pas comment les marsouins régulent et perçoivent ces changements de couleur.

Ce qui a particulièrement surpris les scientifiques participant à l’étude, c’est que le poisson a continué à se camoufler même s’il n’était plus en vie.

Dans cette nouvelle recherche, ils ont utilisé la microscopie pour examiner en détail la peau d’un cochon en mesurant l’effet de la lumière sur différentes parties du poisson.

Les chercheurs ont découvert qu’un photorécepteur, appelé SWS1, situé juste en dessous des chromatophores, pourrait être impliqué dans ce processus.

Ils ont déclaré que ces cellules sont sensibles à la lumière vive à travers les couleurs exprimées par les chromatophores, en particulier la longueur d’onde de la lumière trouvée dans l’habitat des coraux.

Selon les scientifiques, ces récepteurs fournissent aux poissons des informations sur l’endroit et la manière dont la couleur change dans différentes parties de leur peau.

« En examinant la morphologie, la physiologie et l’optique des photorécepteurs dermiques chez les porcins (Lachnolimus maximus« Nous décrivons un mécanisme cellulaire par lequel l’activité des chromatophores (c’est-à-dire la diffusion et l’agrégation) modifie la lumière transmise frappant les récepteurs SWS1 de la peau », ont écrit les scientifiques dans l’étude.

Cette fonctionnalité permet aux poissons vivant dans les récifs de surveiller les chromatophores et de détecter des informations sur leurs performances en matière de changement de couleur.

READ  Des chercheurs découvrent un moyen d'améliorer l'édition de gènes non viraux ainsi qu'un nouveau type de réparation de l'ADN

« Les animaux peuvent prendre une photo de leur peau de l’intérieur. D’une certaine manière, ils peuvent dire à un animal à quoi ressemble sa peau, car ils ne peuvent pas se pencher pour regarder », a expliqué le Dr Johnson.

« Pour être clair, nous ne disons pas que la peau du porc agit comme un œil », a déclaré le Dr Schweckert, ajoutant que les yeux sont capables de bien plus que simplement détecter la lumière.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

À quoi ressemble notre Voie Lactée au milieu des ondes gravitationnelles (vidéo)

Published

on

À quoi ressemble notre Voie Lactée au milieu des ondes gravitationnelles (vidéo)

Une carte simulée de la Voie lactée telle qu’elle apparaît dans les ondes gravitationnelles a donné une forte impression de ce que les futurs détecteurs spatiaux observeront.

Plus de 90 événements d’ondes gravitationnelles ont été détectés jusqu’à présent par un trio de détecteurs au sol : le Laser Interferometer Gravitational-Wave Observatory (LIGO) aux États-Unis, Virgo en Italie et KAGRA au Japon. Tous ces événements détectés sont des fusions d’amas d’étoiles trous noirs Ouah Étoiles à neutrons Dans les galaxies lointaines. Aucun événement d’onde gravitationnelle provenant de notre planète n’a été trouvé voie Lactée.

Continue Reading

science

Une soufflerie historique teste la fusée Mars Ascent Vehicle de la NASA

Published

on

Une soufflerie historique teste la fusée Mars Ascent Vehicle de la NASA

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

source fiable

Relecture

Un modèle réduit du véhicule Mars Ascent est chargé par l’ingénieur d’essai en soufflerie Sam Schmitz dans la soufflerie à trois vagues du Marshall Space Flight Center de la NASA pour des tests. Le tunnel de 14′ x 14′ a été utilisé pour tester les configurations des lanceurs pour Artemis, Redstone, Jupiter-C, Saturn et plus encore. Crédit : NASA/Jonathan Dale

× Fermer

Un modèle réduit du véhicule Mars Ascent est chargé par l’ingénieur d’essai en soufflerie Sam Schmitz dans la soufflerie à trois vagues du Marshall Space Flight Center de la NASA pour des tests. Le tunnel de 14′ x 14′ a été utilisé pour tester les configurations des lanceurs pour Artemis, Redstone, Jupiter-C, Saturn et plus encore. Crédit : NASA/Jonathan Dale

L’équipe MAV (Mars Ascent Vehicle) a récemment terminé des essais en soufflerie au Marshall Space Flight Center de la NASA, dans une installation qui a joué un rôle important dans les missions de la NASA depuis le programme Apollo.

La même installation qui a fourni des tests précieux pour les missions de la NASA en orbite terrestre basse et sur la Lune aide désormais l’agence à préparer le lancement de sa première fusée depuis Mars. Le MAV est un élément important du plan conjoint entre la NASA et l’ESA (Agence spatiale européenne) visant à amener sur Terre des échantillons martiens scientifiquement sélectionnés au début des années 2030.

Le test s’est déroulé du 10 au 15 juillet et a permis à l’équipe de collecter des données aéroacoustiques pour les aider à comprendre la dynamique de conception du MAV à l’aide de modèles réduits imprimés en 3D.

Un modèle réduit du Mars Ascent Vehicle a été testé dans la soufflerie à trois vagues de Marshall. Les sections du tunnel ne mesurent que 14 pouces de haut et de large, mais peuvent atteindre des vitesses de vent allant jusqu’à Mach 5. Crédit image : NASA

« Grâce à ces tests réussis, nous améliorons notre compréhension de l’aérodynamique, des performances intégrées, de la contrôlabilité et du chargement du véhicule du MAV », a déclaré Steve Gaddis, chef de projet MAV. « Nous utiliserons les résultats pour guider notre conception et apporter les améliorations nécessaires au puissant MAV nécessaire pour mettre en orbite des échantillons de roches martiennes. »

READ  Comment, quand et où voir la vue rare de Vénus dans "Les Sept Sœurs" la semaine prochaine

La section d’essai de la soufflerie Marshall ne mesure que 24 pouces de long, 14 pouces de haut et 14 pouces de large. Cependant, il peut atteindre des vitesses hypersoniques allant jusqu’à Mach 5 (environ 3 800 mph) et teste depuis longtemps des fusées célèbres, notamment Redstone, Jupiter-C et Saturn, ainsi que la navette spatiale et le SLS (Space Launch System). dessins. .

Cette illustration montre le Mars Ascent Vehicle (MAV) de la NASA en vol propulsé. Le MAV transportera des tubes contenant des échantillons de roches et de sol martiens vers l’orbite martienne, où le vaisseau spatial Earth Return Orbiter de l’ESA les enfermera dans une capsule de confinement hautement sécurisée et les livrera sur Terre. Crédit : NASA

× Fermer

Cette illustration montre le Mars Ascent Vehicle (MAV) de la NASA en vol propulsé. Le MAV transportera des tubes contenant des échantillons de roches et de sol martiens vers l’orbite martienne, où le vaisseau spatial Earth Return Orbiter de l’ESA les enfermera dans une capsule de confinement hautement sécurisée et les livrera sur Terre. Crédit : NASA

L’équipe a testé des modèles réduits sous plusieurs angles à l’intérieur de la soufflerie pour voir comment le flux d’air pourrait affecter la structure du MAV, a déclaré Annie Katherine Barnes, responsable de la division aéroacoustique du MAV, qui a été co-responsable de la campagne d’essais de juillet. Barnes l’a comparé aux turbulences dans un avion.

« Nous recherchons des zones d’écoulement turbulent pour les lanceurs », a-t-elle déclaré. « Nous recherchons des oscillations de choc et de vastes zones de fluctuations de pression susceptibles de provoquer une réponse structurelle. »

L’équipe utilisera les données de la campagne d’essais de juillet et d’autres analyses pour mieux estimer les environnements que le MAV rencontrera lorsqu’il deviendra le premier véhicule à être lancé depuis la surface d’une autre planète.

Le MAV soutient la campagne prévue de retour d’échantillons sur Mars, qui amènera sur Terre des échantillons scientifiquement sélectionnés pour étude à l’aide des instruments les plus avancés au monde. Ce partenariat stratégique avec l’Agence spatiale européenne développe des technologies et des conceptions préliminaires pour des missions qui permettront de récupérer les premiers échantillons d’une autre planète. Les échantillons actuellement collectés par le rover Perseverance de la NASA alors qu’il explore un ancien delta de rivière ont le potentiel de révéler l’évolution précoce de Mars, y compris la possibilité d’une vie microbienne ancienne.

READ  Un selfie persistant montre qu'elle était occupée sur le Mars Rover

Le MAV, géré par Marshall, sera lancé à bord d’un échantillon d’atterrisseur depuis la Terre pour un voyage de deux ans vers Mars. Il restera sur Mars environ un an pour recevoir les échantillons collectés par Perseverance.

Une fois que le bras de transfert d’échantillons de l’atterrisseur aura chargé les échantillons dans un conteneur sur la fusée, le MAV sera lancé en orbite autour de la planète, libérant le conteneur d’échantillons pour que le Earth Return Vehicle développé par l’ESA puisse les capturer.

Les échantillons devraient atteindre la Terre au début des années 2030. Le programme Mars Sample Return est géré par le Jet Propulsion Laboratory de la NASA en Californie du Sud.

Continue Reading

science

Une nouvelle étude montre que les trous noirs se déchirent et dévorent l’espace-temps beaucoup plus rapidement qu’on ne le pensait auparavant.

Published

on

Une nouvelle étude montre que les trous noirs se déchirent et dévorent l’espace-temps beaucoup plus rapidement qu’on ne le pensait auparavant.

Une étude récente menée par des chercheurs de l’Université Northwestern bouleverse les règles astrophysiques du jeu sur la manière dont les trous noirs supermassifs sont alimentés, révélant que ces géants cosmiques se déforment et déchirent violemment l’espace-temps pour consommer la matière à un rythme étonnamment rapide.

Cette découverte pourrait aider à résoudre des mystères de longue date sur des phénomènes tels que les quasars « d’apparence variable », qui éclatent soudainement puis disparaissent sans explication, remettant potentiellement en question des décennies de théories acceptées.

Pendant de nombreuses années, la sagesse conventionnelle a supposé que les trous noirs « mangeaient » et absorbaient progressivement et systématiquement la matière à un rythme glacial sur des dizaines de milliers d’années. Cependant, à l’aide de simulations 3D haute résolution, des chercheurs de l’Université Northwestern ont brossé un tableau très différent.

Selon cette nouvelle étude publiée le 20 septembre Journal d’astrophysiqueUn trou noir supermassif pourrait accomplir un cycle alimentaire en quelques mois seulement, contredisant les estimations précédentes.

« La théorie classique du disque d’accrétion prédit que le disque évolue lentement. » Nick Kazétudiant diplômé en astronomie à l’Université Northwestern Collège des arts et des sciences Weinberg Qui a dirigé l’étude en A déclaration. « Mais certains quasars – résultant de trous noirs mangeant le gaz de leurs disques d’accrétion – semblent changer radicalement avec le temps, au fil des mois, voire des années. »

« Cette différence est assez drastique. Il semble que l’intérieur du disque, où arrive la majeure partie de la lumière, soit détruit puis régénéré. La théorie classique du disque d’accrétion ne peut pas expliquer cette différence drastique. Mais les phénomènes que nous observons dans nos simulations peuvent l’expliquer. La luminosité et la gradation correspondent Dommages rapides aux zones internes du disque.

Utiliser l’équipe de recherche sommetl’un des plus grands superordinateurs du monde, hébergé au laboratoire national d’Oak Ridge, a exécuté des simulations de magnétohydrodynamique générale en 3D (GRMHD) pour explorer comment les trous noirs se dévorent sans pitié.

Le supercalculateur a permis aux chercheurs d’intégrer la dynamique des gaz, les champs magnétiques et la relativité générale, fournissant ainsi une vue complète du comportement des trous noirs et fournissant l’une des simulations de disques d’accrétion à la plus haute résolution jamais produite.

READ  Relever le défi de la "matière noire" numérique.

Grâce à des simulations, les chercheurs ont découvert que les trous noirs « déforment » l’espace-temps qui les entoure, déchirant le disque d’accrétion – un violent vortex de gaz qui les alimente – en sous-disques interne et externe.

Ce qui se passe ensuite est un processus presque cinématographique de dévoration, de reconditionnement et de répétition. Le trou noir consomme le disque interne, puis les débris du sous-disque externe se déversent vers l’intérieur pour remplir l’espace, pour être dévorés à leur tour.

« Les trous noirs sont des objets de la relativité générale extrême qui affectent l’espace-temps qui les entoure », a déclaré Kaz. « Ainsi, lorsqu’il tourne, il tire sur l’espace qui l’entoure comme un carrousel géant et le force à tourner également – un phénomène appelé » traînée de trame « . Cela crée un effet très fort à proximité du trou noir, qui devient de plus en plus faible. plus loin. »

Ces cycles rapides de « manger-remplir-manger » expliquent probablement le comportement déroutant des quasars dits « à apparence variable ».

Un quasar, abréviation de « source radio quasar-stellaire », est un noyau de galaxie intensément lumineux alimenté par un trou noir supermassif au centre galactique. Les quasars, qui émettent une énergie qui pourrait dépasser celle d’une galaxie entière, font partie des objets les plus brillants et les plus actifs de l’univers, souvent visibles à des milliards d’années-lumière.

Les quasars à « apparence variable » sont un sous-ensemble de quasars qui affichent des changements de luminosité inhabituellement rapides et drastiques, semblent s’allumer et s’éteindre et subissent d’importants changements de luminosité ou d’apparence générale. Ces changements se produisent sur de courtes périodes, souvent de quelques mois à quelques années seulement.

Les fluctuations erratiques des quasars d’apparence variable ont remis en question les théories astrophysiques traditionnelles, ce qui en fait l’objet d’études intenses alors que les chercheurs cherchent à comprendre les mécanismes à l’origine de transitions aussi spectaculaires.

READ  Des chercheurs découvrent un moyen d'améliorer l'édition de gènes non viraux ainsi qu'un nouveau type de réparation de l'ADN

« La région interne du disque d’accrétion, d’où provient l’essentiel de la luminosité, pourrait disparaître complètement, très rapidement, en quelques mois », a expliqué Kaz. « Nous le voyons disparaître complètement. Le système cesse de s’éclairer. Puis il se rallume et le processus se répète. La théorie conventionnelle n’a aucun moyen d’expliquer pourquoi il a disparu en premier lieu, ni comment il se remplit si rapidement. »

Certains chercheurs ont fait censé Les quasars d’apparence variable pourraient être des étoiles qui sont passées près du trou noir et ont été déchirées. D’autres ont Proposition Ces phénomènes n’étaient pas des quasars, mais plutôt de puissantes supernovae.

Grâce à de récentes simulations à haute résolution, les chercheurs pensent que la disparition et la réapparition rapides de quasars d’apparence variable peuvent être liées à l’évolution rapide de la région interne de leurs disques d’accrétion.

Selon Kaz, les simulations montrent que la région où les sous-disques interne et externe se séparent est l’endroit où commence réellement la « frénésie alimentaire » du trou noir.

« Il existe une compétition entre la rotation du trou noir et la friction et la pression à l’intérieur du disque », a expliqué Kaz. « La zone de rupture est l’endroit où le trou noir gagne. Les disques interne et externe entrent en collision les uns avec les autres. Le disque externe rase les couches du disque interne, les poussant vers l’intérieur.




Les modèles traditionnels supposent souvent que les disques d’accrétion sont organisés et cohérents avec la rotation du trou noir. Cependant, Kaz affirme que des simulations récentes montrent que cette théorie est probablement incorrecte.

« Pendant des décennies, les gens ont supposé que les disques d’accrétion correspondaient à la rotation des trous noirs », a déclaré Kaz. « Mais le gaz qui alimente ces trous noirs ne sait pas nécessairement dans quelle direction le trou noir tourne, alors pourquoi s’alignerait-il automatiquement ? Changer l’alignement change radicalement la donne. »

READ  Comment, quand et où voir la vue rare de Vénus dans "Les Sept Sœurs" la semaine prochaine

Au lieu de se déplacer uniformément, les simulations montrent que les sous-disques interne et externe vacillent indépendamment à des vitesses et à des angles différents autour du trou noir.

Les disques internes sont soumis à des oscillations beaucoup plus rapides que leurs homologues externes. Cette variation des forces de rotation provoque la déformation ou la déformation de l’ensemble du disque d’accrétion.

En conséquence, les molécules de gaz provenant de différentes zones du disque entrent en collision les unes avec les autres, produisant de vifs éclats de lumière et d’énergie. Ces collisions à haute énergie agissent comme un propulseur, poussant la matière de plus en plus près de la gravité du trou noir.

Ainsi, au lieu de s’écouler proportionnellement vers le centre du trou noir comme de l’eau tourbillonnante dans un égout, les chercheurs affirment que les sous-disques indépendants du trou noir se balancent comme les roues d’un gyroscope.

En plus de permettre une meilleure compréhension des habitudes alimentaires des trous noirs, les chercheurs espèrent que les nouvelles simulations fourniront des moyens intéressants d’étudier plus en profondeur la nature de ces mystérieux géants, qui ont la capacité de déformer la structure même de l’espace-temps.

« Il est finalement important de pouvoir lier nos résultats à des observations, ce qui peut être réalisé en produisant des observations synthétiques à partir de résultats de simulation tels que ceux présentés ici », ont souligné les chercheurs dans leurs remarques finales.

Tim McMillan est un responsable des forces de l’ordre à la retraite, journaliste d’investigation et co-fondateur de The Debrief. Ses écrits se concentrent généralement sur la défense, la sécurité nationale, la communauté du renseignement et des sujets liés à la psychologie. Vous pouvez suivre Tim sur Twitter : @LtTimMcMillan. Tim peut être contacté par e-mail : [email protected] ou par e-mail crypté : [email protected]

Continue Reading

Trending

Copyright © 2023