Connect with us

science

Les scientifiques utilisent le peroxyde pour observer les réactions des oxydes métalliques

Published

on

Les scientifiques utilisent le peroxyde pour observer les réactions des oxydes métalliques

Newswise – Upton, NY – Chercheurs à Université de Binghamton Recherche menée en partenariat avec Centre des nanomatériaux fonctionnels (CFN) – l’installation des utilisateurs scientifiques du département américain de l’énergie (DOE) au laboratoire national de Brookhaven – pour mieux comprendre comment les peroxydes sur une surface d’oxyde de cuivre favorisent l’oxydation de l’hydrogène mais inhibent l’oxydation du monoxyde de carbone, leur permettant de diriger les réactions d’oxydation. Ils ont pu observer ces changements rapides avec deux méthodes spectrales complémentaires qui n’étaient pas utilisées de cette manière. Les résultats de ce travail ont été publiés dans la revue Actes de l’Académie nationale des sciences (PNAS).

« Le cuivre est l’une des surfaces les plus étudiées et les plus pertinentes, à la fois en catalyse et en science de la corrosion », a-t-il expliqué. Annibal Boscoboïnik, scientifique des matériaux au CFN. « De nombreuses pièces mécaniques utilisées dans l’industrie sont en cuivre, il est donc très important d’essayer de comprendre cet élément des processus d’usure. »

« J’ai toujours aimé regarder les systèmes en cuivre », a-t-il déclaré. Tête d’Ashley Également scientifique des matériaux au CFN. « Ils ont des caractéristiques et des réactions tellement intéressantes, et certains d’entre eux sont vraiment incroyables. »

Mieux comprendre l’oxyde stimuli Il donne aux chercheurs plus de contrôle sur les réactions chimiques qu’ils produisent, y compris les solutions énergétiques propres. Le cuivre, par exemple, peut former du méthanol et le convertir catalytiquement en un carburant précieux, donc être capable de contrôler la quantité d’oxygène et le nombre d’électrons sur le cuivre est une étape essentielle pour des réactions chimiques efficaces.

peroxyde comme agent

Les peroxydes sont des composés chimiques qui contiennent deux atomes d’oxygène liés par des électrons partagés. La liaison dans les peroxydes est plutôt faible, ce qui permet à d’autres produits chimiques de modifier leur structure, les rendant très réactifs. Dans cette expérience, les scientifiques ont pu modifier les étapes redox des réactions redox catalytiques sur une surface de cuivre oxydé (CuO) en déterminant la composition des espèces de peroxyde formées à partir de différents gaz :2 (oxygène), h2 (hydrogène) et monoxyde de carbone (monoxyde de carbone).

READ  Les théoriciens du nucléaire s'associent pour explorer les particules à « saveur lourde »

Redox est une combinaison de réduction et d’oxydation. Dans ce processus, l’agent oxydant gagne un électron et l’agent réducteur perd un électron. En comparant ces différents types de peroxyde et le déroulement de ces étapes, les chercheurs ont découvert que la couche de surface de peroxyde améliorait considérablement la réduction de CuO en faveur de H2 oxydation. Ils ont également découvert que, d’autre part, il agissait comme un inhibiteur de la CuO réductase contre l’oxydation du CO (monoxyde de carbone). Ils ont découvert que cet effet inverse du peroxyde sur les réactions d’oxydo-réduction provient d’une modification des sites de surface où se produit la réaction.

En trouvant ces sites de liaison et en déterminant comment ils favorisent ou inhibent l’oxydation, les scientifiques peuvent utiliser ces gaz pour mieux contrôler la façon dont ces réactions se produisent. Afin de s’adapter à ces réactions, les scientifiques devaient avoir une vision claire de ce qui se passait.

Les bons outils pour le travail

Étudiez cette réaction Sur site C’était important pour l’équipe, car les peroxydes sont très réactifs et ces changements se produisent rapidement. Sans les bons outils ou l’environnement, il est difficile de capturer un moment aussi limité en surface.

L’utilisation d’espèces de peroxyde n’a pas été observée sur les surfaces de cuivre Sur site La spectroscopie infrarouge (IR) enfin. Avec cette technique, les chercheurs utilisent le rayonnement infrarouge pour mieux comprendre les propriétés chimiques d’un matériau en examinant la façon dont le rayonnement est absorbé ou réfléchi dans des conditions de réaction. Dans cette expérience, les scientifiques ont pu distinguer les « types » de peroxyde, avec seulement de très légères différences dans l’oxygène qu’ils transportaient, ce qui aurait été très difficile à déterminer sur une surface d’oxyde métallique.

READ  Les premières images d'un nouveau télescope spatial révèlent les parties les plus profondes de l'univers avec une nouvelle clarté

« J’ai été vraiment excité quand je regardais les spectres infrarouges de ces types de peroxyde sur une surface et j’ai vu qu’il n’y avait pas beaucoup de publications. C’était excitant de voir ces différences en utilisant une technique peu appliquée à ce type de surface », se souvient Head.

La spectroscopie infrarouge à elle seule n’a pas suffi à le confirmer, c’est pourquoi l’équipe a également utilisé une autre technique de spectroscopie appelée Spectroscopie de rayons X à pression ambiante (XPS). XPS utilise des rayons X à faible énergie pour éjecter des électrons d’un échantillon. L’énergie de ces électrons donne aux scientifiques des indices sur les propriétés chimiques des atomes de l’échantillon. La disponibilité des deux méthodes dans le cadre du programme d’utilisateurs du CFN a été essentielle pour rendre cette recherche possible.

« L’une des choses dont nous sommes le plus fiers, ce sont les outils que nous avons et que nous modifions ici », a déclaré Boscoboinik. « Nos instruments sont connectés, de sorte que les utilisateurs peuvent déplacer l’échantillon dans un environnement contrôlé entre ces deux technologies et les étudier sur place pour obtenir des informations complémentaires. Dans la plupart des autres circonstances, l’utilisateur devrait éjecter l’échantillon pour passer à un autre instrument, et changer l’environnement pourrait altérer sa surface.

« Le grand avantage du CFN réside non seulement dans ses installations scientifiques de pointe, mais également dans les opportunités qu’il offre pour la formation de jeunes chercheurs », a-t-il déclaré. Guangwen Cho Professeur à la Thomas J. Watson School of Engineering and Applied Sciences, Department of Mechanical Engineering and Materials Science Program at Binghamton University. « Chacun des étudiants participants a bénéficié d’une vaste expérience pratique avec les outils de microscopie et de spectroscopie disponibles au CFN. »

READ  La mission proposée vise à faire revivre le télescope Spitzer à la retraite

Ce travail a été accompli grâce aux contributions de quatre doctorants du groupe de Zhou : Yaguang Zhu et Jianyu Wang, premiers co-auteurs de cet article, et Shyam Patel et Chaoran Li. Tous ces étudiants sont au début de leur carrière, venant de recevoir leur doctorat en 2022.

résultats futurs

Les résultats de cette étude peuvent s’appliquer à d’autres types d’interactions et plus stimuli à côté du cuivre. Ces découvertes et les processus et techniques qui ont conduit les scientifiques là-bas pourraient se retrouver dans des recherches pertinentes. Les oxydes métalliques sont largement utilisés stimuli eux-mêmes ou des composants stimuli. Ajuster la formation de peroxyde à d’autres oxydes pourrait être un moyen d’empêcher ou d’améliorer les réactions de surface au cours d’autres processus catalytiques.

« Je suis impliqué dans d’autres projets liés au cuivre et aux oxydes de cuivre, y compris la conversion du dioxyde de carbone en méthanol pour une utilisation comme carburant énergétique propre », a déclaré Head. « Regarder ces peroxydes sur la même surface que moi a le potentiel d’avoir un impact sur d’autres projets utilisant du cuivre et d’autres oxydes métalliques. »

Le Laboratoire national de Brookhaven est soutenu par le Bureau des sciences du Département américain de l’énergie. L’Office of Science est le plus grand soutien de la recherche fondamentale en sciences physiques aux États-Unis et s’efforce de relever certains des défis les plus urgents de notre époque. Pour plus d’informations, visitez science.energy.gov.

Suivez BrookhavenLab sur Twitter Twitter ou retrouvez-nous sur Facebook.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La station spatiale chinoise a été impliquée dans un accident spatial

Published

on

La station spatiale chinoise a été impliquée dans un accident spatial
La Station spatiale chinoise Tiangong vue d'en haut.
La Station spatiale chinoise Tiangong vue d'en haut. CMSA

Les membres de l'équipage à bord de la station spatiale chinoise ont terminé avec succès les réparations après que des débris ont provoqué une panne de courant partielle dans l'installation, ont révélé mercredi des responsables de l'Agence chinoise pour l'espace habité (CMSA) lors d'une conférence de presse.

Les débris spatiaux ont heurté les câbles d'alimentation reliés aux ailes solaires du module central et ont été réparés par les astronautes lors de deux sorties dans l'espace à la station spatiale Tiangong, la plus récente au début du mois dernier.

L'équipage devrait revenir sur Terre le 30 avril après que les opérations de la station auront été transférées à l'équipage entrant de Shenzhou-18. Les médias d'État ont rapporté.

La CMSA s'efforce d'améliorer les procédures d'avertissement et d'évitement des collisions spatiales et a réduit le taux de fausses alarmes de 30 %, ont indiqué des responsables de l'agence. Dans le cadre d'une autre mesure visant à améliorer la sécurité, la caméra haute définition installée sur le bras robotique de Tiangong, ainsi que les caméras portables utilisées par les astronautes lors des sorties dans l'espace, seront utilisées pour examiner attentivement l'état de l'extérieur de la station afin de vérifier et d'analyser toute frappe. Mécanisme d'impact de petits débris.

La station spatiale chinoise orbite à environ 280 milles au-dessus de la Terre et à environ 30 milles au-dessus de la Station spatiale internationale. Cela place les deux installations en orbite proche de la Terre, là où se trouvent la plupart des déchets spatiaux dangereux.

READ  SpaceX est sur le point de lancer son premier équipage entièrement civil en orbite

Les débris spatiaux sont constitués de satellites déclassés, de parties de fusées usées et d'un grand nombre de petits fragments résultant de collisions aléatoires impliquant ces objets. Ils voyagent autour de la Terre à une vitesse fulgurante et toute frappe sur l’une ou l’autre station spatiale peut potentiellement causer des dégâts considérables.

Les opérateurs des deux installations orbitales disposent de systèmes pour surveiller les déchets les plus gros, et si l'un d'entre eux est considéré comme étant sur le point d'entrer en collision avec une station, l'installation est déplacée vers une orbite supérieure ou inférieure pour l'éviter.

Lors d'un incident dramatique survenu en 2021, les membres de l'équipage à bord de la Station spatiale internationale ont reçu l'ordre de se réfugier dans leur vaisseau spatial lorsqu'un nuage de débris spatiaux dangereux – créé par un essai antimissile russe qui a détruit un vieux satellite – s'est approché de manière alarmante de la station. . Heureusement, la Station spatiale internationale a pu éviter tout dommage et l'équipage a été autorisé à reprendre ses fonctions normales.

Alors que de plus en plus de déchets spatiaux apparaissent constamment, un certain nombre d'entreprises explorent différentes façons de les éliminer afin de rendre les opérations en orbite proche de la Terre plus sûres, non seulement pour les stations spatiales, mais également pour les satellites opérationnels qui alimentent les services vitaux sur Terre. .

Recommandations des rédacteurs




Continue Reading

science

L'enzyme forme des complexes avec des géométries fractales

Published

on

L'enzyme forme des complexes avec des géométries fractales

Les chercheurs ont identifié une enzyme capable de s’assembler en complexes aux géométries fractales. Les fractales – des modèles hiérarchiques dans lesquels des caractéristiques structurelles à des échelles plus grandes sont répétées à des échelles plus petites – sont bien connues au niveau macroscopique, mais on n'a pas encore observé qu'elles se formaient spontanément à partir de molécules biologiques au niveau moléculaire dans des cellules ou in vitro.

Maintenant, George K. une. Hochberg de l'Institut Max Planck de microbiologie terrestre et de l'Université Philips de Marburg, Jan M. Schuller de l'Université Philips de Marburg et leurs collègues ont découvert que l'enzyme citrate synthase extraite des cyanobactéries Staphylocoque long Les complexes se forment selon un motif fractal appelé triangle de Sierpiński (nature 2024, identification numérique : 10.1038/s41586-024-07287-2). Les triangles de Sierpiński sont constitués de petits triangles équilatéraux imbriqués dans des triangles équilatéraux plus grands.

Forme motivationnelle de S. rectangle La citrate synthase est l'hexadécane. Ces hexamères peuvent s'assembler en triangles de Sierpiński avec 18 ou 54 copies de la protéine (3 ou 9 hexamères). Pour former des fractales, l’enzyme tourne dans le sens opposé à celui dans lequel elle tourne pour lier le substrat pendant la catalyse. Les fractales « corrigent quelque chose d’une manière qui rend la stimulation difficile », explique Hochberg.

L’enzyme ne forme ces structures plus grandes que la nuit, lorsque le pH des cyanobactéries est approximativement neutre. « Il est possible que cette chose soit un accident inoffensif, car elle ne crée cette structure folle qu'à un moment de la journée où vous n'avez de toute façon pas besoin de l'enzyme », explique Hochberg. Le 18-mer se forme à des concentrations si faibles que Hochberg est convaincu qu’il est présent dans les cellules. Il pense que le 54-mer ne s’est peut-être pas formé physiologiquement.

READ  La surface cicatrisée de la lune ne montre que la moitié des effets qu'elle a reçus en 4,5 milliards d'années

Les chercheurs ont utilisé la reconstruction de la protéine ancestrale pour étudier comment l’enzyme a développé sa capacité à former des fractales. L'acide glutamique et l'histidine nécessaires à l'interface de formation des fractales étaient présents dans des protéines ancestrales qui ne formaient pas de fractales. Le remplacement de la glutamine par la leucine a supprimé l’interaction qui empêchait la formation fractale. Ce changement les a incités à se rassembler.

« C'est étrange d'un point de vue évolutionniste », dit Hochberg. « Ce que cela signifie, c'est que tous les liens positifs qui unissent cette chose étaient déjà là. »

« C'est un excellent exemple de la façon dont les caprices de l'évolution peuvent conduire à la formation de structures qui seraient autrement difficiles à réaliser grâce à la conception de protéines, car les contacts interfaciaux, les conflits stériques et la flexibilité angulaire doivent être programmés dans une hiérarchie de facteurs non covalents. interactions », a écrit François Panix, qui a conçu des matériaux contenant la protéine On à l’Université de Washington, a déclaré dans un e-mail : « Un seul élément constitutif est exposé lorsqu’il s’assemble en une fractale. »

L'élimination de la capacité de l'enzyme à former des fractales n'a eu aucun effet notable sur les cellules, explique Hochberg. « Il est si facile de produire ces choses pour l'évolution en une seule étape mutationnelle, que nous devrions en fait nous attendre à ce que cela se produise parfois par hasard », dit-il. Si quelqu'un découvre un assemblage étrange similaire dans un autre organisme, il pourrait se demander s'il ne s'agit que d'un accident inoffensif, explique Hochberg.

READ  SpaceX d'Elon Musk va lancer aujourd'hui la fusée la plus puissante jamais construite en orbite alors que les États-Unis se battent contre la Chine pour la Lune.

Continue Reading

science

Des astronomes ont découvert des « embouteillages » de trous noirs dans les centres galactiques

Published

on

Des astronomes ont découvert des « embouteillages » de trous noirs dans les centres galactiques

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture

Couple normal individuel de M = 107M problème. Les lignes noires montrent le couple de type I ainsi que le couple GW. Les lignes violettes représentent le couple thermique, tandis que les lignes bleues représentent le couple total. Panneau de gauche : couple tracé dans l’espace R. Panneau de droite : couple tracé dans l’espace τ. Les lignes verticales pointillées indiquent τ± (vert) et τ0 (rouge), endroits où des pièges migratoires sont susceptibles de se produire. crédit: Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae828

× Fermer

Couple normal individuel de M = 107M problème. Les lignes noires montrent le couple de type I ainsi que le couple GW. Les lignes violettes représentent le couple thermique, tandis que les lignes bleues représentent le couple total. Panneau de gauche : couple tracé dans l’espace R. Panneau de droite : couple tracé dans l’espace τ. Les lignes verticales pointillées indiquent τ± (vert) et τ0 (rouge), endroits où des pièges migratoires sont susceptibles de se produire. crédit: Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae828

Une étude internationale, dirigée par des chercheurs de l'Université Monash, a révélé des informations importantes sur la dynamique des trous noirs au sein des disques massifs situés au centre des galaxies.

Publié dans Avis mensuels de la Royal Astronomical Society, l'étude Il montre les processus complexes qui déterminent quand et où les trous noirs ralentissent et interagissent les uns avec les autres, conduisant potentiellement à des fusions.

Les résultats de l’étude mettent en évidence les émissions d’ondes gravitationnelles (GW) provenant de la fusion des trous noirs, événements qui peuvent être détectés par des instruments tels que le Laser Gravitational Wave Observatory (LIGO).

Lorsque deux trous noirs se rapprochent trop, ils perturbent l’espace-temps lui-même, émettant des ondes gravitationnelles avant de finalement fusionner en un seul trou.

Le Dr Evgeny Grishin, chercheur postdoctoral à l'École de physique et d'astronomie de l'Université Monash qui a dirigé l'étude, a comparé le phénomène à une intersection très fréquentée sans feux de signalisation fonctionnels.

« Nous avons examiné combien et où nous aurions ces intersections très fréquentées », a déclaré le Dr Grishin.

La recherche s'est concentrée sur les centres des galaxies, où les trous noirs peuvent fusionner plusieurs fois en raison de l'énorme force gravitationnelle du trou noir supermassif situé au centre.

De plus, la présence d’un disque d’accrétion massif de gaz contribue à la luminosité de ces galaxies, les classant parmi les noyaux galactiques actifs (AGN).

L'interaction entre les trous noirs plus petits et le gaz environnant les fait migrer à l'intérieur du disque, s'accumulant dans des régions appelées pièges à migration. Ces pièges augmentent la possibilité de collisions rapprochées entre trous noirs, pouvant conduire à des fusions.

« Les effets thermiques jouent un rôle crucial dans ce processus, affectant l'emplacement et la stabilité des pièges migratoires. Cela implique notamment que nous ne voyons pas de pièges migratoires se produire dans les galaxies actives à grande luminosité », a déclaré le Dr Grishin.

Les résultats de l’étude font progresser notre compréhension des fusions de trous noirs et ont des implications plus larges pour l’astronomie des ondes gravitationnelles, l’astrophysique des hautes énergies, l’évolution des galaxies et la rétroaction des noyaux galactiques actifs.

« Malgré ces découvertes importantes, beaucoup de choses sur la physique des trous noirs et de leurs environnements restent inconnues », a déclaré le Dr Grishin. « Nous sommes satisfaits des résultats et nous sommes désormais sur le point de découvrir où et comment les trous noirs fusionnent dans les noyaux galactiques.

« L’avenir de l’astronomie des ondes gravitationnelles et de la recherche sur les noyaux galactiques actifs est exceptionnellement prometteur. »

Plus d'information:
Evgeny Grishin et al., Effet du couple thermique sur les pièges de migration des disques AGN et les amas d'ondes gravitationnelles, Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae828

Informations sur les magazines :
Avis mensuels de la Royal Astronomical Society


READ  Un petit trou noir monstrueux peut contenir des preuves d'une croissance géante
Continue Reading

Trending

Copyright © 2023