Connect with us

science

Mars Curiosity Rover voit une forte signature carbone dans un lit de roches – pourrait indiquer une activité biologique

Published

on

Le carbone est essentiel à la vie, à notre connaissance. Ainsi, chaque fois que nous détectons une forte signature carbone quelque part comme Mars, cela pourrait indiquer une activité biologique.

Un fort signal de carbone dans les roches martiennes indique-t-il des processus biologiques d’un certain type ?

Tout signal de carbone fort est intrigant lorsque vous êtes à la recherche de la vie. C’est un élément commun à toutes les formes de vie que nous connaissons. Mais il existe différents types de carbone, et le carbone peut se concentrer dans l’environnement pour d’autres raisons. Cela ne signifie pas automatiquement que la vie est impliquée dans les signatures carbone.

Les atomes de carbone ont toujours six protons, mais le nombre de neutrons peut varier. Les atomes de carbone avec différents nombres de neutrons sont appelés isotopes. Trois isotopes du carbone sont présents naturellement : C12 et C13, qui sont stables, et C14, un radionucléide. C12 a six neutrons, C13 a sept neutrons et C14 a huit neutrons.

En ce qui concerne les isotopes du carbone, la vie préfère le C12. Ils l’utilisent dans la photosynthèse ou pour métaboliser les aliments. La raison est relativement simple. C12 a un neutron de moins que C13, ce qui signifie que lorsqu’il se lie avec d’autres atomes dans des molécules, il établit moins de connexions que C13 dans la même situation. La vie est essentiellement paresseuse et elle cherchera toujours la manière la plus simple de faire les choses. C12 est plus facile à utiliser car il forme moins de liaisons que C13. Il est plus facile d’accès que C13, et la vie ne prend jamais le chemin difficile lorsqu’un moyen plus facile est disponible.

Le rover Curiosity travaille dur dans le cratère Gale de Mars, à la recherche de signes de vie. Il fore dans la roche, extrait un échantillon pulvérisé et le place dans son laboratoire de chimie à bord. Le laboratoire de Curiosity s’appelle SAM, ce qui signifie Analyse d’échantillons sur Mars. À l’intérieur de SAM, le rover utilise la pyrolyse pour cuire l’échantillon et convertir le carbone de la roche en méthane. La pyrolyse se fait dans un flux d’hélium inerte pour éviter toute contamination dans le processus. Ensuite, il sonde le gaz avec un instrument nommé le Spectromètre laser accordable pour découvrir quels sont les isotopes du carbone dans le méthane.

Outil d'analyse d'échantillons de Curiosity Rover de la NASA sur Mars (SAM)

L’outil d’analyse d’échantillons sur Mars s’appelle SAM. SAM est composé de trois instruments différents qui recherchent et mesurent les produits chimiques organiques et les éléments légers qui sont des ingrédients importants potentiellement associés à la vie. Crédit : NASA/JPL-Caltech

L’équipe derrière le SAM de Curiosity a examiné 24 échantillons de roche avec ce processus et a récemment découvert quelque chose de remarquable. Six des échantillons ont montré des rapports élevés de C12 à C13. Par rapport à une norme de référence terrestre pour les rapports C12/C13, les échantillons de ces six sites contenaient plus de 70 parties par millier de C12 en plus. Sur Terre, 98,93 % du carbone est du C12 Terre et le C13 forme les 1,07 % restants.

READ  Le satellite CAPSTONE de la NASA n'est plus en mode sans échec • LOG

Une nouvelle étude publiée dans les Actes de l’Académie nationale des sciences (PNAS) a présenté les résultats. Son titre est « Compositions d’isotopes de carbone appauvris observées au cratère Gale, Mars.L’auteur principal est Christopher House, un scientifique de Curiosity à la Penn State University.

C’est une découverte passionnante, et si ces résultats étaient obtenus sur Terre, ils signaleraient qu’un processus biologique a produit l’abondance de C12.

Sur la Terre antique, les bactéries de surface produisaient du méthane comme sous-produit. Ils s’appellent méthanogènes, et ce sont des procaryotes du domaine Archaea. Les méthanogènes sont encore présents aujourd’hui sur Terre, dans les zones humides anoxiques, dans le tube digestif des ruminants, et les milieux extrêmes comme les sources chaudes.

Ces bactéries produisent du méthane qui pénètre dans l’atmosphère en interagissant avec la lumière ultraviolette. Ces interactions produisent des molécules plus complexes qui pleuvent sur la surface de la Terre. Ils sont conservés dans les roches terrestres, ainsi que leurs signatures de carbone. La même chose aurait pu se produire sur Mars, et si c’était le cas, cela pourrait expliquer les découvertes de Curiosity.

Mais nous sommes en mars. Si l’histoire de la recherche de la vie sur Mars nous dit quelque chose, ce n’est pas de nous devancer.

« Nous trouvons des choses sur Mars qui sont extrêmement intéressantes, mais nous aurions vraiment besoin de plus de preuves pour dire que nous avons identifié la vie », a déclaré Paul Mahaffy, ancien chercheur principal pour l’analyse d’échantillons de Curiosity au laboratoire Mars. « Nous examinons donc ce qui aurait pu causer la signature carbone que nous voyons, sinon la vie. »

La curiosité enquête sur un mystère

Curiosity a pris ce panorama à 360 degrés le 9 août 2018 sur Vera Rubin Ridge. Crédits : NASA/JPL-Caltech/MSSS

Dans leur article, les auteurs écrivent : « Il existe de multiples explications plausibles à l’appauvrissement anormal 13C observé dans le méthane évolué, mais aucune explication unique ne peut être acceptée sans recherches supplémentaires.

L’une des difficultés à comprendre les signatures de carbone comme celle-ci est notre soi-disant biais terrestre. La plupart de ce que les scientifiques savent de la chimie atmosphérique et des choses connexes est basé sur la Terre. Ainsi, lorsqu’il s’agit de cette signature carbone nouvellement détectée sur Mars, les scientifiques peuvent trouver difficile de garder l’esprit ouvert à de nouvelles possibilités qui n’existent peut-être pas sur Mars. L’histoire de la recherche de la vie sur Mars nous le dit.

« La chose la plus difficile est de laisser tomber la Terre et de laisser tomber ce parti pris que nous avons et d’essayer vraiment d’entrer dans les principes fondamentaux de la chimie, de la physique et des processus environnementaux sur Mars », a déclaré l’astrobiologiste Goddard Jennifer L. Eigenbrode, qui a participé au étude carbone. Auparavant, Eigenbrode a dirigé une équipe internationale de scientifiques de Curiosity dans la détection d’une myriade de molécules organiques – celles qui contiennent du carbone – sur la surface martienne.

READ  Un nouveau modèle virtuel Cortex à grande échelle qui réussit très bien à résoudre des tâches visuelles

« Nous devons ouvrir nos esprits et sortir des sentiers battus », a déclaré Eigenbrode, « et c’est ce que fait ce document. »

Les chercheurs soulignent deux explications non biologiques de la signature carbone inhabituelle dans leur article. L’un concerne les nuages ​​moléculaires.

L’hypothèse du nuage moléculaire stipule que notre système solaire a traversé un nuage moléculaire il y a des centaines de millions d’années. C’est un événement rare, mais il se produit environ une fois tous les 100 millions d’années, les scientifiques ne peuvent donc pas l’ignorer. Les nuages ​​​​moléculaires sont principalement de l’hydrogène moléculaire, mais l’un d’eux peut avoir été riche en type de carbone plus léger détecté par Curiosity dans le cratère Gale. Le nuage aurait provoqué le refroidissement de Mars, provoquant une glaciation dans ce scénario. Le refroidissement et la glaciation auraient empêché le carbone plus léger des nuages ​​moléculaires de se mélanger avec l’autre carbone de Mars, créant des dépôts de C12 élevé. L’article indique que « la fonte des glaciers pendant la période glaciaire et le retrait des glaces après devraient laisser les particules de poussière interstellaires sur la surface géomorphologique glaciaire ».

L’hypothèse correspond puisque Curiosity a trouvé certains des niveaux élevés de C12 au sommet des crêtes – comme le sommet de Vera Rubin Ridge – et d’autres points élevés dans le cratère Gale. Les échantillons ont été recueillis à partir de « … une variété de lithologies (mudstone, sable et grès) et sont répartis dans le temps tout au long des opérations de la mission à ce jour », indique le document. Pourtant, l’hypothèse du nuage moléculaire est une chaîne d’événements improbable.

Curiosity Rover de la NASA sur Vera Rubin Ridge

Le rover Curiosity de la NASA a levé son bras robotique avec la foreuse pointée vers le ciel tout en explorant la crête de Vera Rubin à la base du mont Sharp à l’intérieur du cratère Gale – en toile de fond par le bord du cratère éloigné. Cette mosaïque de caméra Navcam a été cousue à partir d’images brutes prises le Sol 1833, le 2 octobre 2017, et colorisée. Crédit : NASA/JPL/Ken Kremer/kenkremer.com/Marco Di Lorenzo.

L’autre hypothèse non biologique implique la lumière ultraviolette. L’atmosphère de Mars contient plus de 95 % de dioxyde de carbone, et dans ce scénario, la lumière UV aurait interagi avec le gaz carbonique dans l’atmosphère de Mars, produisant de nouvelles molécules contenant du carbone. Les molécules auraient plu sur la surface de Mars et seraient devenues une partie de la roche là-bas. Cette hypothèse est similaire à la façon dont les méthanogènes produisent indirectement du C12 sur Terre, mais elle est entièrement abiotique.

« Les trois explications correspondent aux données », a déclaré l’auteur principal Christopher House. « Nous avons simplement besoin de plus de données pour les exclure ou les exclure. »

Carbon Signature Mars Rocks

Ce chiffre de l’étude montre les trois hypothèses qui pourraient expliquer la signature carbone. Le bleu montre le méthane produit biologiquement à partir de l’intérieur martien, créant le dépôt de matière organique appauvrie en 13C après la photolyse. L’orange montre des réactions photochimiques via la lumière UV qui peuvent entraîner divers produits atmosphériques, dont certains se déposeraient sous forme de matière organique avec des liaisons chimiques facilement rompues. Le gris montre l’hypothèse du nuage moléculaire. Crédit : House et al. 2022.

« Sur Terre, les processus qui produiraient le signal carbone que nous détectons sur Mars sont biologiques », a ajouté House. « Nous devons comprendre si la même explication fonctionne pour Mars ou s’il existe d’autres explications car Mars est très différent. »

READ  Regardez le voyage du télescope spatial James Webb dans l'espace (photos et vidéo)

Près de la moitié des échantillons de Curiosity avaient des niveaux élevés de C12 de manière inattendue. Ils ne sont pas seulement supérieurs au rapport de la Terre ; ils sont plus élevés que ce que les scientifiques ont trouvé dans les météorites martiennes et l’atmosphère martienne. Les échantillons provenaient de cinq emplacements du cratère Gale, et tous les emplacements avaient une chose en commun : ils avaient des surfaces anciennes et bien conservées.

Comme l’a dit Paul Mahaffy, les résultats sont « extrêmement intéressants ». Mais les scientifiques en apprennent encore sur le cycle du carbone de Mars, et nous ignorons encore beaucoup de choses. Il est tentant de faire des hypothèses sur le cycle du carbone de Mars en se basant sur le cycle du carbone de la Terre. Mais le carbone peut parcourir Mars d’une manière que nous n’avons même pas encore devinée. Que cette signature carbone finisse ou non par être un signal de vie ou non, il s’agit toujours d’une connaissance précieuse pour comprendre la signature carbone de Mars.

« Définir le cycle du carbone sur Mars est absolument essentiel pour essayer de comprendre comment la vie pourrait s’intégrer dans ce cycle », a déclaré Andrew Steele, un scientifique de Curiosity basé à la Carnegie Institution for Science à Washington, DC « Nous avons fait cela avec beaucoup de succès sur Terre , mais nous commençons tout juste à définir ce cycle pour Mars. »

Mais il n’est pas facile de tirer des conclusions sur Mars en se basant sur le cycle du carbone terrestre. Steele l’a clairement indiqué lorsqu’il a déclaré: «Il y a une énorme partie du cycle du carbone sur Terre qui implique la vie, et à cause de la vie, il y a une partie du cycle du carbone sur Terre que nous ne pouvons pas comprendre parce que partout où nous regardons, il y a vie. »

Selfie de la persévérance à la Rochette

Le rover Perseverance de la NASA recherche des signes de vie ancienne sur Mars au Jezero Crater. Les résultats de Curiosity peuvent éclairer les activités d’échantillonnage de Persévérance. Crédit : NASA/JPL-Caltech/MSSS

Curiosity travaille toujours sur Mars et le sera encore un moment. La signification de ces échantillons, ainsi qu’une meilleure compréhension du cycle du carbone de Mars, nous attendent. Curiosity échantillonnera plus de roche pour mesurer les concentrations d’isotopes de carbone. Il échantillonnera la roche d’autres surfaces anciennes bien conservées pour voir si les résultats sont similaires à ceux-ci. Idéalement, il rencontrerait un autre panache de méthane et l’échantillonnerait, mais ces événements sont imprévisibles et il n’y a aucun moyen de s’y préparer.

Quoi qu’il en soit, ces résultats aideront à informer la collecte d’échantillons de Persévérance à Jezero Crater. La persévérance peut confirmer des signaux de carbone similaires et même déterminer s’ils sont biologiques ou non.

Persévérance rassemble également des échantillons pour le retour sur Terre. Les scientifiques étudieront ces échantillons plus efficacement que le laboratoire embarqué du rover, alors qui sait ce que nous apprendrons.

La vie ancienne sur Mars est une perspective alléchante, mais pour l’instant, au moins, elle est incertaine.

Publié à l’origine sur Univers aujourd’hui.

Pour en savoir plus sur cette recherche, voir :

Référence : « Compositions d’isotopes de carbone appauvris observées au cratère Gale, Mars » par Christopher H. House, Gregory M. Wong, Christopher R. Webster, Gregory J. Flesch, Heather B. Franz, Jennifer C. Stern, Alex Pavlov, Sushil K Atreya, Jennifer L. Eigenbrode, Alexis Gilbert, Amy E. Hofmann, Maëva Millan, Andrew Steele, Daniel P. Glavin, Charles A. Malespin et Paul R. Mahaffy, 17 janvier 2022, Actes de l’Académie nationale des sciences.
DOI : 10.1073/pnas.2115651119

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Rhododendron — Il y a plus dans cette beauté qu'il n'y paraît

Published

on

Rhododendron — Il y a plus dans cette beauté qu'il n'y paraît

En avril et mai, les rhododendrons fleurissent et de nombreuses variétés présentent d'énormes fleurs aux couleurs vives en rose, violet et blanc. L’abondance de fleurs parmi les grandes feuilles vertes cireuses peut être époustouflante, et lorsque les pétales tombent par mauvais temps, un verger de rhododendrons peut ressembler à un pays des merveilles pastel.

Mais les rhododendrons, malgré leurs jolies fleurs, provoquent des dégâts environnementaux lorsqu'ils poussent dans des habitats où ils ne devraient pas se trouver.

Leo Whelan (8 ans) et Emilia Whelan (9 ans) avec le militant écologiste irlandais et personnalité médiatique Duncan Stewart aux jardins Powerscourt pour lancer un nouveau sentier de réflexion immersif dans la magnifique promenade des rhododendrons du jardin. Photo de : Dermot Byrne

C'est la beauté des fleurs de rhododendrons au printemps et au début de l'été qui a poussé les chasseurs de plantes de l'époque victorienne à rapporter des spécimens des rives de la mer Noire et d'autres régions d'Asie, notamment des contreforts de l'Himalaya, de Chine et de Malaisie. Jusqu’à un millier d’espèces différentes de rhododendrons poussent à l’état sauvage dans ces régions.

La noblesse terrienne victorienne, déjà désireuse d'apporter des plantes exotiques des nouvelles colonies, était fascinée par les rhododendrons. La tendance a décollé et diverses variétés ont été greffées et plantées dans les jardins et les bois des demeures seigneuriales de Grande-Bretagne et d'Irlande. Les promenades avec les rhododendrons étaient exactement ce qu'il fallait faire, afin que mesdames et messieurs puissent se promener dans un tunnel de rhododendrons au printemps et découvrir la joie de leurs grosses fleurs lumineuses et de leur parfum riche et sucré. Parfois, les rhododendrons étaient simplement plantés dans la forêt de la ferme – certaines variétés, notamment le Rhododendron ponticum, prospéraient à l’ombre partielle et dans un sol acide et étaient donc facilement naturalisées.

Le Rhododendron altaclarense fleurit au sol dans les jardins botaniques nationaux de Kilmaccurragh à Wicklow.  Photo : Dan Linehan
Le Rhododendron altaclarense fleurit au sol dans les jardins botaniques nationaux de Kilmaccurragh à Wicklow. Photo : Dan Linehan
READ  Regardez le voyage du télescope spatial James Webb dans l'espace (photos et vidéo)

Les Victoriens avaient une mentalité coloniale, un appétit frivole pour les dernières modes horticoles et peu de compréhension de l’écologie. Ils n’étaient pas enclins à considérer les éventuelles conséquences négatives de ces buissons de rhododendrons disséminés à travers les forêts.

L'une des premières introductions de rhododendrons ici a été réalisée par la famille Herbert à Muckross House Killarney, siège du comte de Kenmare. Cet établissement fut très célèbre et fut visité par la reine Victoria en 1861. On pourrait appeler ces « influenceurs » de l'époque ; Ce qui y était populaire était copié dans les domaines de la noblesse de tout le pays. Des rhododendrons ont été plantés dans les forêts pour leur attrait esthétique, mais aussi pour servir de couvert aux faisans, une autre espèce introduite qui pose des problèmes environnementaux. Les rhododendrons ont prospéré dans le sol acide de la vallée de Killarney et ont rapidement envahi les forêts de chênes des lacs et des pentes.

Dans ces habitats forestiers, dans des conditions naturelles, le sous-sol est rempli de houx, d'aubépines, de prunelliers, de noisetiers et de fusains, sous lesquels pousse un couvert de fleurs sauvages des bois. des bandes de jacinthes des bois ; Superbes anémones des bois à fleurs blanches; L'oseille des bois et la chélidoine jaune brillant – des plantes indigènes qui fleuriraient désormais jusqu'en avril – sont exclues là où les rhododendrons ont pris le dessus.

Les feuilles de rhododendron contiennent une toxine qui aide la plante à empêcher les insectes et les mammifères de manger ses feuilles.  Photo : Dan Linehan
Les feuilles de rhododendron contiennent une toxine qui aide la plante à empêcher les insectes et les mammifères de manger ses feuilles. Photo : Dan Linehan

Les plantes forestières saines abritent généralement une grande diversité de papillons forestiers spécialement adaptés ; papillons spécialisés; Bourdons et abeilles solitaires ; Colonies de fourmis. insectes mineurs de feuilles; Bouclier les bogues. Et des centaines d’autres espèces d’invertébrés. Ceux-ci abritent à leur tour de nombreux oiseaux forestiers, tels que les grimpereaux, les pics épeiche, les bécasses, les parulines et les geais. Les relations entre les nombreuses espèces végétales et animales d’une forêt comme celle-ci ont évolué au fil des milliers d’années et sont aussi finement ajustées que les nombreux éléments interconnectés d’un écosystème fonctionnel.

READ  La conduction thermique joue un rôle essentiel dans la dynamique des gouttelettes

Mais lorsque les rhododendrons envahissent, ils harcèlent tous les arbres et arbustes indigènes avec leur croissance vigoureuse, en particulier les grandes feuilles cireuses qui projettent de lourdes ombres et empêchent la plupart des plantes à fleurs qui autrement prospéreraient ici de dominer. Les papillons sont privés des plantes dont ils ont besoin pour produire du nectar et des plantes indigènes dont leurs chenilles ont évolué pour se nourrir. Les papillons de nuit et les syrphes sont également affectés. Les feuilles de rhododendron contiennent une toxine qui aide la plante à empêcher les insectes et les mammifères de manger ses feuilles, et avec l'ombre qu'elle projette, sa domination devient absolue. De cette manière, les rhododendrons sonnent le glas d’innombrables espèces qui, autrement, prospéreraient dans les habitats forestiers indigènes.

Ajoutez à cela ce que les botanistes du Trinity College de Dublin ont découvert Le nectar du rhododendron est toxique pour certaines abeilles irlandaises.

Contient du nectar Toxines grisesCe sont des produits chimiques que ces plantes produisent naturellement pour les aider à éviter d’être mangées par les insectes et les mammifères. Lors d’expériences, les abeilles mellifères sont mortes quelques heures seulement après avoir consommé du nectar de rhododendron. Les abeilles solitaires d’origine deviennent désorientées, voire paralysées, par le poison. Il est intéressant de noter que les espèces locales de bourdons n’ont pas été affectées par les toxines présentes dans le nectar de rhododendron, car elles se sont révélées capables de consommer le nectar sans aucun effet secondaire négatif.

Un autre effet de la croissance dense des rhododendrons est que les plants d’arbres sont incapables de s’établir sous leur forte ombre. La plupart des semis d'arbres ici, comme le chêne, l'aubépine et l'orme, sont bien adaptés aux conditions ombragées des habitats forestiers, mais l'ombre abondante et la litière de feuilles cireuses du rhododendron sont trop intenses pour que ces arbres se reproduisent. Le résultat est que les forêts infestées de rhododendrons sont incapables de se renouveler et qu’il n’y aura pas de prochaine génération d’arbres indigènes.

READ  Le satellite CAPSTONE de la NASA n'est plus en mode sans échec • LOG

L'Irlande possède toujours l'un des pourcentages de couverture forestière les plus faibles d'Europe, les forêts dites indigènes ou semi-naturelles ne couvrant qu'environ 2 % du pays. Seule une petite partie de ce territoire est établie depuis longtemps et presque aucune d'entre elles n'est exempte de surpâturage par les cerfs ou d'invasion de laurier-cerise et de rhododendron.

La rareté des forêts saines constitue ici une blessure environnementale ouverte. Alors que des travaux sont en cours pour éliminer les rhododendrons de certaines zones du parc national de Killarney, des problèmes sont survenus avec les méthodes de gestion. Depuis les années 2000, la mauvaise gestion par l’État de ce désastre environnemental a suscité de nombreuses critiques. Le parc national de Killarney appartient à l'État. Il n'y a donc aucune excuse pour la négligence continue de l'un des derniers refuges de forêt tropicale tempérée à feuilles caduques d'Irlande. D’autres forêts du pays souffrent également des effets des rhododendrons et du surpâturage.

Si vous êtes en déplacement en avril et en mai, pour admirer les rhododendrons et peut-être vous sentir submergé par la générosité des fleurs, rappelez-vous qu'il y a plus dans cette beauté qu'il n'y paraît.

Continue Reading

science

Des chercheurs planétaires résolvent le mystère de la façon dont Pluton a obtenu sa forme de poire

Published

on

Des chercheurs planétaires résolvent le mystère de la façon dont Pluton a obtenu sa forme de poire

La surface de Pluton est dominée par l'immense bassin en forme de poire de Spoutnik Planitia. Il semble que son origine soit due à un impact, mais la modélisation n'a pas encore expliqué son étrange géométrie. Les planétologues de l'Université de Berne proposent un mécanisme d'impact qui reproduit la forme topographique du bassin tout en expliquant son alignement près de l'axe Pluton-Charon. Selon leurs recherches, la collision de Pluton avec un corps planétaire d'un diamètre d'environ 700 kilomètres (435 miles) a donné naissance à Spoutnik Planitia.

Cette mosaïque de Pluton a été réalisée à partir d'images New Horizons LORRI prises le 14 juillet 2015, à une distance de 49 700 miles (80 000 km). Projetée à partir d'un point situé à 1 800 km au-dessus de l'équateur de Pluton, cette vue regarde vers le nord-est la région sombre et cratérisée de Cthulhu-Riggio, en direction de l'étendue lumineuse et lisse de plaines glacées appelée Spoutnik Planum. Le pôle nord de Pluton se trouve juste à l'extérieur de l'image de gauche. Cette mosaïque a été réalisée à partir d'images panchromatiques de la caméra New Horizons LORRI, avec des couleurs superposées à partir du nuancier Ralph à bord de New Horizons. Crédit image : SA Stern et autres.

En 2015, la sonde New Horizons de la NASA a révélé que la surface de Pluton était géologiquement complexe.

Il est dominé par un bassin rempli de glace d'azote de 1 200 x 2 000 km (746 x 1 243 mi) appelé Spoutnik Planitia.

Spoutnik Planitia est la partie ouest de Tombo Reggio, la célèbre structure en forme de cœur de Pluton.

READ  SpaceX retarde à nouveau le lancement du satellite italien, cette fois à cause d'un navire capricieux

Le bassin est de 3 à 4 kilomètres (1,9 à 2,5 mi) plus bas en altitude que la majeure partie de la surface de la planète naine.

Le Dr Harry Ballantyne, planétologue à l’Université de Berne, a déclaré : « L’apparence brillante de Spoutnik Planitia est due au fait qu’elle est principalement remplie de glace blanche à l’azote qui se déplace et se déplace constamment pour lisser la surface. »

« Cet azote s'est probablement accumulé rapidement après l'impact en raison de la basse altitude. »

« La partie orientale du « noyau » est également recouverte d’une couche similaire mais beaucoup plus fine de glace d’azote, dont l’origine n’est pas encore claire pour les scientifiques, mais est probablement liée à Spoutnik Planitia. »

Le Dr Martin Goetze, planétologue à l'Université de Berne, a déclaré : « La forme allongée de Spoutnik Planitia indique clairement que la collision n'était pas une collision directe, mais plutôt une collision oblique. »

New Horizons a capturé cette image haute résolution de Pluton le 14 juillet.  La surface de Pluton présente une gamme éblouissante de couleurs subtiles, rehaussées dans cette vue par un arc-en-ciel de bleus pâles, de jaunes, d'oranges et de rouges profonds.  De nombreux reliefs ont leurs propres couleurs distinctes, racontant une histoire géologique et climatique complexe que les scientifiques commencent tout juste à déchiffrer.  Source de l'image : NASA/Laboratoire de physique appliquée de l'Université Johns Hopkins/Institut de recherche du Sud-Ouest.

New Horizons a capturé cette image haute résolution de Pluton le 14 juillet. La surface de Pluton présente une gamme éblouissante de couleurs subtiles, rehaussées dans cette vue par un arc-en-ciel de bleus pâles, de jaunes, d'oranges et de rouges profonds. De nombreux reliefs ont leurs propres couleurs distinctes, racontant une histoire géologique et climatique complexe que les scientifiques commencent tout juste à déchiffrer. Source de l'image : NASA/Laboratoire de physique appliquée de l'Université Johns Hopkins/Institut de recherche du Sud-Ouest.

Les auteurs ont utilisé un logiciel de simulation d’hydrodynamique de particules lisses (SPH) pour recréer numériquement de tels impacts, en faisant varier la configuration de Pluton et de son corps d’impact, ainsi que la vitesse et l’angle du corps d’impact.

READ  Regardez le voyage du télescope spatial James Webb dans l'espace (photos et vidéo)

Ces simulations ont confirmé leurs soupçons sur l'angle d'impact oblique et ont déterminé la configuration du corps d'impact.

« Le noyau de Pluton est si froid que les roches sont restées très solides et n'ont pas fondu malgré la chaleur de l'impact, et grâce à l'angle d'impact et à la faible vitesse, le noyau d'impact ne s'est pas enfoncé dans le noyau de Pluton, mais est resté intact », a déclaré Dr Ballantyne.

« Quelque part sous Spoutnik se trouvent les restes du noyau d'un autre objet massif, que Pluton n'a jamais digéré », a ajouté le Dr Eric Asfaugh, planétologue à l'Université d'Arizona.

« Cette force fondamentale et cette vitesse relativement faible étaient la clé du succès de ces simulations : la faible force donnerait lieu à un reste de surface très symétrique qui ne ressemblait en rien à la forme de larme observée par New Horizons. »

« Nous sommes habitués à considérer les collisions planétaires comme des événements incroyablement intenses dont vous pouvez ignorer les détails, à l'exception de choses comme l'énergie, l'élan et la densité. »

« Mais dans le système solaire lointain, les vitesses sont beaucoup plus lentes et la glace solide est solide, vous devez donc être plus précis dans vos calculs. C'est là que le plaisir commence. »

Les découvertes de l’équipe ont également jeté un nouvel éclairage sur la structure interne de Pluton.

« En fait, un impact géant comme celui simulé s'est probablement produit très tôt dans l'histoire de Pluton », ont déclaré les chercheurs.

« Cela pose cependant un problème : une dépression géante comme Spoutnik Planitia devrait se déplacer lentement au fil du temps vers le pôle de la planète naine en raison des lois de la physique, car elle souffre d'un déficit de masse. Cependant, elle est paradoxalement proche de l'équateur. .

READ  La NASA recule son énorme fusée après avoir échoué à terminer le test du compte à rebours

« L'explication théorique précédente était que Pluton, comme de nombreux autres corps planétaires du système solaire externe, possède un océan d'eau liquide souterrain. »

« Selon l'explication précédente, la croûte glacée de Pluton serait plus fine dans la région de Spoutnik Planitia, provoquant un gonflement de l'océan, et comme l'eau liquide est plus dense que la glace, on se retrouverait avec un excédent de masse qui stimulerait la migration vers l'équateur. »

« Cependant, la nouvelle étude propose un point de vue différent. »

« Dans nos simulations, le manteau primitif de Pluton a été complètement excavé par l'impact, et comme le matériau du noyau de l'impacteur est dispersé sur le noyau de Pluton, cela crée un excès de masse local qui pourrait expliquer la migration vers l'équateur sans océan souterrain, ou tout au plus. un océan souterrain », a déclaré le Dr Gotzi : « Très mince. »

« Cette origine nouvelle et innovante de la forme en forme de cœur de Pluton pourrait conduire à une meilleure compréhension de l'origine de Pluton », a déclaré le Dr Adeniy Denton, planétologue à l'Université de l'Arizona.

le résultats Il a été publié dans le magazine Astronomie naturelle.

_____

H. A. Ballantyne et autres. Spoutnik Planitia est un vestige d'impact qui pointe vers un ancien masson rocheux sur Pluton sans océan. Nat Astron, publié en ligne le 15 avril 2024 ; est ce que je: 10.1038/s41550-024-02248-1

Continue Reading

science

Une molécule organique stable ouvre la voie aux piles à combustible de nouvelle génération

Published

on

Une molécule organique stable ouvre la voie aux piles à combustible de nouvelle génération

Trouver des alternatives énergétiques propres à l’utilisation de combustibles fossiles est devenu plus urgent car les niveaux de dioxyde de carbone dans l’atmosphère ont atteint des niveaux records. Le fait que des catalyseurs métalliques coûteux tels que le platine soient nécessaires dans la technologie des piles à combustible pour convertir l'hydrogène en énergie est l'un des défis auxquels les chercheurs sont confrontés..

Charles Machan (à gauche) et Michael Hylinski (à droite) ont identifié une molécule organique qui pourrait remplacer l'utilisation de métaux rares et coûteux dans les piles à combustible. Crédit image : Collège et École supérieure des arts et des sciences, Université de Virginie.

Une équipe de chercheurs de Université de VirginieLa Graduate School of Arts and Sciences de l'UCLA a découvert une molécule organique qui pourrait remplacer les catalyseurs métalliques plus coûteux.

Les piles à combustible, essentielles pour alimenter les véhicules électriques et les générateurs industriels et résidentiels, s'appuient sur des métaux comme le platine pour initier la réaction chimique qui divise les sources de carburant comme l'hydrogène gazeux en protons et en électrons, qui les convertissent ensuite en électricité.

Étant donné que les catalyseurs organiques se décomposent en parties inutiles au cours du processus de catalyse, ils ne sont pas considérés comme une alternative viable aux catalyseurs à métaux rares.

Cependant, le doctorat. Les candidates Emma Cook et Anna Davis, ainsi que les professeurs adjoints de chimie Charles Machan et Michael Hylinski, ont découvert une molécule organique composée de carbone, d'hydrogène, d'azote et de fluor qui pourrait servir d'alternative pratique dans une étude publiée dans la revue Société chimique américaine.

Selon Machan, la molécule peut initier une réaction qui réduit l'oxygène à l'intérieur de la pile à combustible, réagir avec les sous-produits de la réaction et revenir à son état d'origine.

READ  La conduction thermique joue un rôle essentiel dans la dynamique des gouttelettes

Ces molécules sont stables dans des conditions dans lesquelles la plupart des molécules se sont décomposées et continuent d'atteindre une activité compatible avec le niveau des catalyseurs de métaux de transition..

Charles Machan, professeur agrégé, École supérieure des arts et des sciences, Université de Virginie

Les résultats préliminaires de l'équipe représentent une avancée majeure dans la recherche de piles à combustible rentables et respectueuses de l'environnement, utilisant des matériaux moins coûteux et plus durables. La prochaine génération de piles à combustible pourrait être développée d’ici 5 à 10 ans.

Cette même molécule ne peut pas se transformer en pile à combustible. Ce résultat dit qu'il peut y avoir des catalyseurs à base de carbone, et si vous modifiez ceux qui contiennent certains groupes chimiques, vous pouvez espérer les transformer en d'excellents catalyseurs pour la réaction de réduction de l'oxygène. L’objectif ultime est d’incorporer les propriétés qui rendent cette molécule si stable dans un matériau massif, afin de remplacer l’utilisation du platine..

Charles Machan, professeur agrégé, École supérieure des arts et des sciences, Université de Virginie

Hilinski, dont le groupe de recherche se concentre sur la chimie organique, a souligné l'importance de la nature interdisciplinaire de l'équipe de recherche.

Cette molécule que nous utilisons comme catalyseur a une histoire dans mon laboratoire, mais nous avons toujours recherché son utilisation dans des réactions chimiques effectuées sur des molécules contenant du carbone beaucoup plus grosses, telles que les ingrédients actifs de médicaments. Sans l'expertise de Charlie Machan, je ne pense pas que nous aurions pu relier ce sujet à la chimie des piles à combustible..

Michael Hylinski, professeur agrégé, Graduate School of Arts and Sciences, Université de Virginie

La découverte pourrait également avoir un impact sur la production industrielle de peroxyde d’hydrogène, un produit ménager standard utilisé dans le traitement des eaux usées et la fabrication du papier.

READ  Le satellite CAPSTONE de la NASA n'est plus en mode sans échec • LOG

Machan a dit :Le processus de fabrication du peroxyde d’hydrogène est peu respectueux de l’environnement et consomme beaucoup d’énergie. Il faut reformer le méthane avec de la vapeur à haute température pour libérer l'hydrogène utilisé pour le générer.« .

La découverte de l'équipe Machan pourrait également renforcer le rôle catalyseur de cette mesure, ce qui pourrait profiter aux entreprises, à l'environnement et à la technologie de traitement de l'eau.

Hilinski a également noté que les implications de cette découverte et du travail d'équipe qui en résulte pourraient aller bien au-delà du stockage d'énergie.

Hilinski a dit :Dans l’ensemble, l’une des choses les plus intéressantes de cette étude est qu’en électrifiant le catalyseur, nous avons modifié sa façon de réagir. C’est quelque chose d’inattendu et cela pourrait également être utile dans la fabrication de médicaments, que mon équipe de recherche cherche à explorer.« .

Machan, dont le groupe de recherche se spécialise en électrochimie moléculaire, attribue cette découverte à la composition interdisciplinaire de l'équipe de recherche.

Machan a conclu son discours en disant :Sans l'expertise de l'équipe de Mike Hylinski dans la fabrication de molécules organiques stables pouvant subir le type de réactions nécessaires, ce travail n'aurait pas été possible. Cette molécule organique unique nous a permis de faire quelque chose que seuls les métaux de transition peuvent faire normalement.« .

Référence du magazine :

Cook, NE, et coll. (2024) Réduction homogène de l’O_2 sans métal par électrocatalyseur à base d’iminium. Société chimique américaine. est ce que je.org/10.1021/jacs.3c14549

source: https://as.virginia.edu/

Continue Reading

Trending

Copyright © 2023