Elles sont plusieurs fois plus rapides que la mémoire flash et nécessitent beaucoup moins d’énergie : les cellules mémoire memristives pourraient révolutionner l’efficacité énergétique des ordinateurs neuronaux. Dans ces ordinateurs, calqués sur le fonctionnement du cerveau humain, les cellules memristives agissent comme des synapses artificielles. De nombreux groupes à travers le monde travaillent avec des circuits neuronaux compatibles – mais souvent avec un manque de compréhension de leur fonctionnement et des modèles défectueux. Les chercheurs de Julich ont maintenant résumé les principes physiques et les modèles dans un article de synthèse complet dans la revue Advances in Physics.
Certaines tâches – telles que la reconnaissance de formes et le langage – sont exécutées très efficacement par le cerveau humain, ne nécessitant qu’environ un dix millième de la puissance de ce que l’on appelle « l’ordinateur von Neumann ». L’une des raisons réside dans les différences structurelles : dans l’architecture von Neumann, il existe une séparation claire entre la mémoire et le processeur, ce qui nécessite le transfert constant de grandes quantités de données. C’est une perte de temps et d’énergie – le soi-disant goulot d’étranglement de von Neumann. Dans le cerveau, le processus de calcul se déroule directement dans la mémoire de données et les synapses biologiques effectuent à la fois des tâches de mémoire et de processeur.
À Jülich, les scientifiques ont travaillé pendant plus de 15 ans sur des dispositifs spéciaux de stockage de données et des composants qui pourraient avoir des propriétés similaires aux synapses du cerveau humain. Les dispositifs de mémoire dits memristifs, également connus sous le nom de memristors, sont extrêmement rapides, économes en énergie et peuvent être minimisés jusqu’à l’échelle du nanomètre. L’action des cellules memristives repose sur un effet très particulier : leur résistance électrique n’est pas constante, mais peut être modifiée et réinitialisée par application d’une tension externe, théoriquement en continu. Le changement de résistance est contrôlé par le mouvement des ions oxygène. Si ceux-ci s’éloignent de la couche d’oxyde métallique semi-conducteur, le matériau devient plus conducteur et la résistance électrique diminue. Ce changement de résistance peut être utilisé pour stocker des informations.
Les processus qui peuvent se produire dans les cellules sont très complexes et varient en fonction du système matériel. Trois chercheurs de l’Institut Jülich Peter Grunberg – le professeur Regina Dittmann, le Dr Stefan Menzel et le professeur Rainer Wasser – ont compilé les résultats de leurs recherches dans un article de synthèse détaillé, « Nanospheres in Metal Oxides : The Mechanism of Valence Change ». Ils expliquent en détail les différents effets physiques et chimiques dans les memristors et mettent en évidence l’influence de ces effets sur les propriétés de commutation et la fiabilité des cellules memristives.
« Si vous regardez les activités de recherche actuelles dans le domaine des circuits neuronaux memristors, elles sont souvent basées sur des approches expérimentales pour améliorer les matériaux », a déclaré Rainer Wasser, directeur de l’Institut Peter Grunberg. « Notre objectif avec notre article de synthèse est de donner aux chercheurs quelque chose avec quoi travailler afin de permettre une amélioration matérielle basée sur la perspicacité. » L’équipe d’auteurs a travaillé sur l’article de près de 200 pages pendant dix ans et il était tout naturel qu’ils continuent à intégrer les progrès des connaissances.
Regina Dittmann de l’Institut Peter Grünberg explique : « Les fonctions similaires des cellules memristives nécessaires pour être utilisées comme synapses artificielles ne sont pas le cas normal. Il y a généralement des sauts soudains de résistance, causés par l’amplification mutuelle du mouvement ionique et de la chaleur Joule. » . « Dans notre article de synthèse, nous fournissons aux chercheurs la compréhension nécessaire de la façon de modifier la dynamique des cellules pour permettre un mode de fonctionnement analogique. »
« Vous voyez encore et encore que les groupes imitent leurs circuits de memristor avec des modèles qui ne tiennent pas du tout compte de la dynamique élevée des cellules. Ces circuits ne fonctionneront jamais. » Stefan Menzel, qui dirige les activités de modélisation à l’Institut Peter Grunberg et a développé de puissants modèles intégrés qui sont maintenant dans le domaine public, a déclaré. « Dans notre article bilan, nous vous présentons les bases très utiles pour une utilisation correcte de nos modèles compacts. »
Feuille de route de l’informatique neuronale
La feuille de route pour l’informatique et l’ingénierie neurale, publiée en mai 2022, montre comment l’informatique neurale peut aider à réduire la consommation d’énergie massive des technologies de l’information à l’échelle mondiale. Dans ce document, des chercheurs de l’Institut Peter Grünberg (PGI-7), ainsi que des experts de premier plan dans le domaine, ont synthétisé diverses possibilités technologiques, approches informatiques, algorithmes d’apprentissage et domaines d’application.
Selon l’étude, les applications en intelligence artificielle, telles que la reconnaissance de formes ou la reconnaissance de la parole, sont susceptibles de bénéficier de manière particulière de l’utilisation de dispositifs neuronaux. En effet, ils reposent – bien plus que l’informatique numérique traditionnelle – sur la transmission de grandes quantités de données. Les cellules memristives permettent de traiter ces énormes ensembles de données directement en mémoire sans les faire aller et venir entre le processeur et la mémoire. Cela peut réduire l’efficacité énergétique des réseaux de neurones artificiels de plusieurs ordres de grandeur.
Les cellules memristives peuvent également être liées pour former des réseaux à haute densité qui permettent aux réseaux de neurones d’apprendre localement. Ainsi, ce que l’on appelle l’informatique de pointe déplace les calculs du centre de données vers l’usine, la voiture ou le domicile des personnes nécessitant des soins. Ainsi, des opérations de surveillance et de contrôle peuvent être effectuées ou des actions de sauvetage initiées sans envoyer de données via le cloud. « Cela permet d’obtenir deux choses à la fois : économiser de l’énergie, et en même temps, les données personnelles et les données liées à la sécurité restent sur le site », explique le professeur Dittmann, qui a joué un rôle clé dans la création de la feuille de route en tant qu’éditeur.
La Mars Society est sur le point de tenir sa conférence annuelle, en personne et en ligne, et vous pouvez regarder le tout virtuellement en vous inscrivant.
Vingt-sixième édition internationale Mars La conférence communautaire débute jeudi 5 octobre à l’Arizona State University à Tempe. La réunion comprend une liste d’orateurs qui parlent de sujets d’actualité Missions sur MarsTâches analogiques et plans pour l’avenir.
L’événement se déroulera quotidiennement jusqu’au dimanche (8 octobre) et les informations d’inscription seront disponibles Disponible sur cette page, gracieuseté de la Mars Society. Il y aura une diffusion en direct gratuite et accessible au public de l’événement, mais les inscrits pourront accéder aux événements en direct.
à propos de:« Nous devons aller sur Mars avant que je meure. » Lisez un extrait exclusif de « Elon Musk » du biographe Walter Isaacson
« L’événement de cette année se concentrera sur le thème » Mars pour tous « », ont écrit les représentants de la Mars Society dans un communiqué. « Alors que l’intérêt mondial et le soutien du public pour les humains sur Mars augmentent, les défenseurs de cette entreprise – y compris la Mars Society – ont développé une série d’initiatives qui permettent aux membres du public d’en apprendre davantage sur, et même d’expérimenter, l’idée d’établissement humain. sur Mars. » Planète rouge. »
Des outils en ligne permettront aux participants virtuels de soumettre des questions aux intervenants, de se connecter avec d’autres participants et de regarder la diffusion en direct. Il y aura également une démonstration en direct de MarsVR, une plateforme de réalité virtuelle open source de la Mars Society « qui peut être utilisée pour des recherches et des formations sérieuses dans le but d’envoyer des humains sur Mars ».
Une nébuleuse rouge rosé occupe le devant de la scène dans une nouvelle image de l’Observatoire européen austral (ESO).
Le nuage en expansion de poussière et de gaz, connu sous le nom d’IC1284, est une émission nébuleuseUn nuage lumineux et diffus de gaz ionisé qui émet sa propre lumière. Cette nébuleuse en émission, au centre de l’image, brille en rouge à cause de l’activité une étoile Formation et fusion d’hydrogène dans la région.
« Sa lueur rose provient des électrons des atomes d’hydrogène : ils sont excités par le rayonnement des jeunes étoiles, mais perdent ensuite de l’énergie et émettent une certaine couleur ou longueur d’onde de lumière », ont déclaré les responsables de l’ESO. Il a dit dans un communiqué.
à propos de: Vues époustouflantes de l’espace depuis le très grand télescope de l’ESO (photos)
Les astronomes ont photographié IC1284 à l’aide de la caméra grand champ de l’ESO, appelée OmegaCAM, sur le télescope d’enquête VLT (VST) en Observatoire du Paranal Au Chili. (VLT signifie « Very Large Telescope ».) Les nébuleuses sont composées d’énormes nuages de poussière et de gaz, qui alimentent le processus de formation de nouvelles étoiles. Sur la nouvelle image, la lueur rouge chaude d’IC1284 est entrecoupée d’étoiles scintillantes tout autour.
IC1284 est rejoint par deux nébuleuses à réflexion bleue, connues sous les noms de NGC6589 et NGC6590, situées dans le coin inférieur droit de la nouvelle image VST. Comparés aux nébuleuses par émission, les nuages de poussière interstellaire dans les nébuleuses par réflexion reflètent la lumière d’une ou plusieurs étoiles proches, créant la couleur bleue caractéristique observée.
« Poussière en réflexion nébuleuse « Les longueurs d’onde plus courtes et plus bleues sont préférentiellement diffusées par les étoiles proches, ce qui donne à ces nébuleuses leur étrange lueur », expliquent les responsables de l’ESO dans le communiqué. « C’est la même raison pour laquelle le ciel est bleu ! »
La nouvelle photo, publiée mardi 2 octobre, a été prise dans le cadre d’une initiative plus large organisée par elle. Éso, appelée VST H alpha Survey of the Southern Galactic Level and Swell (VPHAS+). L’enquête vise à observer les nébuleuses et les étoiles en lumière visible pour aider les astronomes à comprendre comment les étoiles naissent, vivent et meurent, selon le communiqué.
Représentation schématique du modèle de disque d’accrétion incliné. L’axe de rotation du trou noir est censé être droit de haut en bas dans cette illustration. La direction du jet est approximativement perpendiculaire au plan du disque. Le désalignement entre l’axe de rotation du trou noir et l’axe de rotation du disque fait tourner et projeter le disque. Crédit : Yuzhou Cui et al. (2023), Intouchable Lab@Openverse et Zhejiang Lab
Des chercheurs confirment la rotation de la galaxie massive M87 Le trou noir En surveillant l’oscillation dans son plan, à l’aide des données de deux décennies de radiotélescopes mondiaux. Cette découverte représente une avancée majeure dans l’étude des trous noirs.
Le trou noir supermassif au cœur de la galaxie M87, rendu célèbre par la première image de l’ombre d’un trou noir, a produit une autre première : il a été confirmé que les jets émanant du trou noir vacillaient, fournissant une preuve directe de l’existence du trou noir. Rotation.
Les trous noirs supermassifs, monstres des milliards de fois plus lourds que le soleil qui mangent tout ce qui les entoure, y compris la lumière, sont difficiles à étudier car aucune information ne peut s’échapper de l’intérieur. En théorie, il existe très peu de propriétés que nous pouvons espérer mesurer. Une propriété observable est la rotation, mais en raison des difficultés impliquées, il n’y a pas eu d’observations directes de la rotation du trou noir.
Deux décennies d’observations apportent des preuves
À la recherche de preuves de la rotation d’un trou noir, une équipe internationale a analysé les données d’observation de la galaxie M87 sur deux décennies. Située à 55 millions d’années-lumière en direction de la constellation de la Vierge, cette galaxie contient un trou noir 6,5 milliards de fois plus massif que le Soleil, le même trou noir qui a produit la première image de l’ombre d’un trou noir par le télescope Event Horizon ( ISE). ) en 2019. Le trou noir supermassif de M87 est connu pour avoir un disque d’accrétion, qui alimente le trou noir en matière, et un jet, dans lequel la matière est éjectée à proximité du trou noir à une vitesse proche de la vitesse de la lumière.
(Panneau supérieur) Cellule M87 à 43 GHz en moyenne tous les deux ans de 2013 à 2018. Les années correspondantes sont indiquées dans le coin supérieur gauche. Les flèches blanches indiquent l’angle de position du plan dans chaque sous-parcelle. (Panneau inférieur) Evolution observée de la tendance des jets entre 2000 et 2022. Les points verts et bleus ont été obtenus à partir d’observations aux fréquences 22 et 43 GHz. La ligne rouge représente une courbe sinusoïdale ajustée sur une période de 11 ans. Crédit : Yuzhou Cui et al. (2023)
L’équipe a analysé les données sur 170 périodes collectées par le réseau VLBI de l’Asie de l’Est (EAVN), le réseau de lignes de base très longues (VLBA), le réseau commun de KVN et VERA (KaVA) et le réseau presque mondial de l’Asie de l’Est vers l’Italie (EATING). ). Réseau VLBI Au total, plus de 20 radiotélescopes du monde entier ont contribué à cette étude.
Résultats et implications
Les résultats montrent que les interactions gravitationnelles entre le disque d’accrétion et la rotation du trou noir font osciller ou avancer la base du flux, de la même manière que les interactions gravitationnelles au sein du système solaire font bouger la Terre. L’équipe a réussi à relier la dynamique des flux au trou noir supermassif central, fournissant ainsi la preuve directe que le trou noir est effectivement en rotation. Le jet change de direction d’environ 10 degrés avec une précession de 11 ans, ce qui est cohérent avec les simulations théoriques du supercalculateur menées par ATERUI II à l’Observatoire astronomique national du Japon (NAOJ).
« Nous sommes satisfaits de ce résultat important », déclare Yuzhou Cui, auteur principal de l’article résumant les recherches qu’elle a commencées en tant qu’étudiante diplômée au NAOJ avant de rejoindre le laboratoire du Zhejiang en tant que chercheuse postdoctorale. « Étant donné que le désalignement entre le trou noir et le disque est relativement faible et que la période de précession est d’environ 11 ans, une collecte de données à haute résolution permettant de suivre la structure de M87 sur deux décennies et une analyse complète sont nécessaires pour obtenir ce résultat. »
« Après avoir réussi à visualiser le trou noir de cette galaxie grâce à l’EHT, la question de savoir si ce trou noir tourne ou non est devenue le principal intérêt des scientifiques », explique le Dr Kazuhiro Hada du NAOJ. « Maintenant, l’anticipation s’est transformée en certitude. Ce monstrueux trou noir est déjà en train de tourner. »
« Il s’agit d’une percée scientifique passionnante qui a finalement été révélée grâce à des années d’observations conjointes menées par une équipe internationale de chercheurs de 45 institutions à travers le monde, travaillant ensemble comme une seule équipe », a déclaré le Dr Motoki Kino de l’Université Kogakuin, coordinateur du projet VLBI. pour l’Asie de l’Est. Groupe de travail sur la science des noyaux galactiques du réseau actif. « Nos données d’observation s’adaptant parfaitement à une simple courbe sinusoïdale nous apportent de nouvelles avancées dans notre compréhension du trou noir et du système à réaction. »
Pour en savoir plus sur cette découverte, voir Vérification de la rotation d’un trou noir supermassif.
Référence : « La buse à jet se connectant à un trou noir rotatif dans M87 » par Yucho Kuei, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yusuke Mizuno, Hyunwook Ru, Markei Honma, Kono Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Chen, Evgenia Kravchenko, Juan Carlos Algaba, Xiaoping Cheng, Eli Zhou, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru Sin Lu, Kotaro Ninuma, Jungwan Oh, Ken Ohsuga, Satoko Sawada Satoh, Bong Won Son, Hiroyuki R . Takahashi, Meeko Takamura, Fumi Tazaki, Sasha Tripp, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Botaccio, Do Young-byun, Lang Kui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang Song Lee, Ji-Won Lee, Jeong-Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexei Melnikov, Carlo Migoni, Si-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Chung Chen, Jo-Yun Hwang, Dong-Kyu Jung, Heo-Ryung Kim, Jeong Suk Kim, Hideyuki Kobayashi, Bin Li, Guangwei Li, Xiaofei Li, Xiong Liu, Qinghui Liu, Xiang Liu, Chung Sik Oh, Tomoaki Aoyama, Duke Jiu Ruo, Jinqing Wang, Na Wang, Xiqiang Wang, Bo Xia, Hao Yan, Jae-hwan Yum, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongping Zhao, Yi Zhong, 27 septembre 2023, nature. est ce que je: 10.1038/s41586-023-06479-6