Connect with us

science

Notre étude du ciel révèle les secrets de la naissance des planètes

Published

on

Notre étude du ciel révèle les secrets de la naissance des planètes

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

source fiable

Écrit par un ou plusieurs chercheurs

Relecture

Des disques qui donnent naissance à de nouvelles planètes, vus par le Very Large Telescope. Crédit : ISO/CE. Jinski, A. Jarofi, P.-G. Valegaard et coll.

× Fermer

Des disques qui donnent naissance à de nouvelles planètes, vus par le Very Large Telescope. Crédit : ISO/CE. Jinski, A. Jarofi, P.-G. Valegaard et coll.

Lorsque nous regardons les étoiles, ce qui nous anime habituellement n’est pas la nostalgie des profondeurs lointaines de l’espace. Lorsque nous regardons là-bas, nous nous regardons réellement nous-mêmes. Nous essayons de comprendre notre place dans l’immensité inimaginable de l’univers.

L’une des questions les plus pressantes qui nous anime est celle de savoir à quel point nous sommes spéciaux. La vie est-elle apparue seulement ici sur Terre, ou notre galaxie coopère-t-elle avec elle ?

La première étape pour le découvrir est de comprendre à quel point la Terre, et par extension l’ensemble de notre système solaire, est réellement spéciale. Cela nécessite de connaître la manière dont les systèmes solaires se forment réellement. C’est exactement ce que mes collègues et moi commençons à découvrir grâce à une nouvelle série d’études sur les régions de formation d’étoiles.

Au cours des dernières décennies, les astronomes ont découvert plus de 5 000 planètes en orbite autour d’étoiles lointaines, appelées exoplanètes. Nous savons maintenant que les planètes sont si nombreuses que vous pouvez observer presque n’importe quelle étoile dans le ciel nocturne et être sûr qu’il y a des planètes en orbite autour d’elle. Mais à quoi ressemblent ces planètes ?

La première planète découverte en orbite autour d’une étoile semblable au soleil nous a été un choc. C'était ainsi appelé Jupiter chaudIl s’agit d’une énorme géante gazeuse qui tourne autour de son étoile mère sur une orbite si étroite que l’année ne dure que quatre jours. C’est un monde vraiment étrange qui ne ressemble à aucun autre dans notre système solaire.

Depuis cette première découverte pionnière, les astronomes ont continué à découvrir des systèmes serrés de super-Terres, des planètes rocheuses plusieurs fois plus massives que la Terre, ainsi que de magnifiques géantes gazeuses en orbite pendant un siècle autour de leur étoile mère. Parmi les nombreux systèmes planétaires que nous avons découverts, aucun n’est équivalent à notre système solaire. En fait, la plupart d’entre eux sont très différents.

Pour comprendre comment tous ces différents systèmes sont nés, nous devons remonter au début. Ces majestueux disques de poussière et de gaz entourent les jeunes étoiles. Ce sont ces pépinières qui finiront par produire de nouveaux systèmes planétaires.

Ces disques Ce sont d'énormes créatures, jusqu'à plusieurs centaines de fois la distance entre la Terre et le Soleil. Cependant, il paraît petit dans le ciel. En effet, même les plus proches, qui se trouvent pratiquement dans l'arrière-cour de notre galaxie, se trouvent entre 600 et 1 600 années-lumière.

C'est une petite distance si l'on considère que la Voie lactée a un diamètre de plus de 100 000 années-lumière, mais cela signifie néanmoins que la lumière, l'élément le plus rapide de l'univers, met jusqu'à 1 600 ans pour nous atteindre à partir de là.

La taille typique d'une de ces pépinières planétaires, vue de la Terre, serait un angle de 1 seconde d'arc dans le ciel, ce qui équivaut à 3 600èmes de degré. Pour mettre les choses en perspective, c'est comme essayer d'observer quelqu'un debout au sommet de la Tour Eiffel à 500 kilomètres de distance dans la capitale néerlandaise, Amsterdam.

Pour observer ces disques, nous avons besoin des télescopes les plus récents et les plus grands. Nous avons besoin d’outils avancés capables de corriger les turbulences atmosphériques qui brouillent nos images. Ce n’est pas une mince affaire d’ingénierie, puisque la dernière génération d’outils est disponible depuis environ une décennie.

Nouveaux résultats

Utiliser l'Observatoire européen australTrès grand télescope« , et VLT, et Caméra de terrain à optique adaptative extrêmeNous avons maintenant commencé à scanner les jeunes étoiles proches.

Notre équipe, composée de scientifiques de plus d’une douzaine de pays, a pu observer plus de 80 de ces jeunes étoiles avec des détails époustouflants – et nos résultats ont été publiés dans la revue Une série de papiers Dans le Journal d'Astronomie et d'Astrophysique.

Toutes les images ont été prises en lumière proche infrarouge, invisible à l’œil humain. Ils montrent la lumière de jeunes étoiles lointaines réfléchie par de minuscules particules de poussière dans les disques. Tout comme le sable sur une plage, cette poussière finira par s’agglutiner pour former de nouvelles planètes.

Ce que nous avons découvert, c’est une diversité étonnante dans les formes de ces pépinières planétaires. Certains ont d'énormes systèmes d'anneaux, d'autres ont de grands bras en spirale. Certains sont lisses et calmes, d’autres sont pris au milieu de la tempête alors que la poussière et les gaz des nuages ​​​​de formation d’étoiles environnants pleuvent sur eux.

Disques formant des planètes à l'intérieur du nuage Chamaeleon I, riche en gaz, à environ 600 années-lumière de la Terre. Crédit : Jinski et al., 2024, CC BY-SA

× Fermer

Disques formant des planètes à l'intérieur du nuage Chamaeleon I, riche en gaz, à environ 600 années-lumière de la Terre. Crédit : Jinski et al., 2024, CC BY-SA

Même si nous nous attendions à une certaine variation, notre enquête montre pour la première fois que cela est vrai même au sein des mêmes régions de formation d’étoiles. Par conséquent, même les systèmes planétaires qui se forment dans le même voisinage peuvent être très différents les uns des autres.

La découverte d’un si large éventail de disques suggère que l’énorme diversité d’exoplanètes découvertes jusqu’à présent est le résultat de ce large spectre de pépinières planétaires.

Contrairement au Soleil, la plupart des étoiles de notre galaxie ont des compagnes, où deux étoiles ou plus gravitent autour d’un centre de masse commun. En examinant la constellation d'Orion, nous avons constaté que les étoiles groupées en groupes de deux étoiles ou plus étaient moins susceptibles d'avoir de grands disques formant des planètes que les étoiles isolées. C’est une chose utile à savoir lors de la recherche d’exoplanètes.

Une autre découverte intéressante est l’inégalité des disques dans cette région, ce qui suggère qu’elle pourrait abriter des planètes massives qui déforment les disques.

La prochaine étape de nos recherches consistera à relier des planètes spécifiques à leurs pépinières, afin de comprendre en détail comment se forment différents systèmes. Nous souhaitons également zoomer de plus près à l’intérieur de ces disques, là où des planètes telluriques comme notre Terre se sont peut-être déjà formées.

C’est pourquoi nous utiliserons la prochaine génération de télescopes, notamment »Très grand télescopePour l'Observatoire européen austral, actuellement en construction dans le désert chilien d'Atacama.

Il y a beaucoup de questions auxquelles il faut répondre. Mais grâce à notre enquête, nous savons désormais que la première étape sur le long chemin vers l’émergence de la vie est une très belle étape.

READ  Comment les corps errant dans l'espace interstellaire se sont retrouvés seuls: The Tribune India
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La sonde spatiale Voyager 1 transmet à nouveau des données après que la NASA les a détectées à distance à 24 milliards de kilomètres – The Irish Times

Published

on

La sonde spatiale Voyager 1 transmet à nouveau des données après que la NASA les a détectées à distance à 24 milliards de kilomètres – The Irish Times

Le vaisseau spatial le plus éloigné de la Terre, Voyager 1, a recommencé à communiquer correctement avec la NASA après que les ingénieurs ont travaillé pendant des mois pour réparer à distance la sonde vieille de 46 ans.

Le Jet Propulsion Laboratory de la NASA, qui construit et exploite le vaisseau spatial robotique de l'agence, a déclaré en décembre que la sonde, située à plus de 24 milliards de kilomètres, envoyait un code absurde à la Terre.

Dans une mise à jour publiée lundi, le JPL a annoncé que l’équipe de la mission avait pu « après quelques investigations innovantes » obtenir des données utilisables sur la santé et l’état des systèmes d’ingénierie de Voyager 1. « La prochaine étape consiste à permettre au vaisseau spatial de commencer à apporter les données scientifiques. dos. » Elle a ajouté que malgré le défaut, Voyager 1 fonctionnait normalement depuis le début.

Lancé en 1977, Voyager 1 a été conçu dans le but principal d'effectuer des études rapprochées de Jupiter et de Saturne au cours d'une mission de cinq ans. Cependant, son voyage s'est poursuivi et le vaisseau spatial approche désormais d'un demi-siècle d'exploitation.

Voyager 1 a pénétré dans l'espace interstellaire en août 2012, ce qui en fait le premier objet fabriqué par l'homme à quitter le système solaire. Il roule actuellement à une vitesse de 60 821 km/h.

Le dernier problème était lié à l'un des trois ordinateurs à bord du vaisseau spatial, chargé de remplir les données scientifiques et techniques avant de les envoyer sur Terre. Incapable de réparer une puce cassée, l'équipe du JPL a décidé de déplacer le code endommagé ailleurs, une tâche difficile compte tenu de la technologie obsolète.

READ  L'Agence spatiale européenne pense que nous pouvons faire pousser des jardins hydroponiques sur la lune

Les ordinateurs de Voyager 1 et de sa sœur Voyager 2 disposaient de moins de 70 kilo-octets de mémoire au total, soit l'équivalent d'une image informatique à basse résolution. Ils utilisent de vieilles bandes numériques pour enregistrer des données.

La réparation a été envoyée depuis la Terre le 18 avril, mais il a fallu deux jours pour évaluer si elle a réussi, car il faut environ 22 heures et demie pour que le signal radio atteigne Voyager 1 et 22 heures supplémentaires pour que la réponse revienne sur Terre. .

« Lorsque l'équipe de vol de la mission a reçu une réponse du vaisseau spatial le 20 avril, elle a constaté que la modification fonctionnait », a déclaré le JPL.

Parallèlement à son annonce, le JPL a publié une photo des membres de l'équipe de vol du Voyager applaudissant et applaudissant dans une salle de conférence après avoir reçu des données utilisables, avec des ordinateurs portables, des cahiers et des cookies sur la table devant eux.

L'astronaute canadien à la retraite Chris Hadfield, qui a participé à deux missions de navette spatiale et a servi comme commandant de la Station spatiale internationale, a comparé la mission du JPL à l'entretien longue distance d'une vieille voiture.

« Imaginez qu'une puce informatique se brise dans votre voiture en 1977. « Imaginez maintenant qu'elle se trouve dans l'espace interstellaire, à 25 milliards de kilomètres de là », a écrit Hadfield.

Voyager 1 et 2 ont fait de nombreuses découvertes scientifiques, notamment des enregistrements détaillés de Saturne et la révélation que Jupiter possède également des anneaux, ainsi qu'une activité volcanique active sur l'une de ses lunes, Io. Des sondes ont ensuite découvert 23 nouvelles lunes autour des planètes extérieures.

READ  Le MIT accueille la Fondation Heising-Simons 2023 51 Pegasi b Fellow Juliana García-Mejía | Nouvelles du MIT

Parce que leur trajectoire les éloigne du Soleil, les sondes du Voyager sont incapables d'utiliser des panneaux solaires et convertissent à la place la chaleur générée par la désintégration radioactive naturelle du plutonium en électricité pour alimenter les systèmes du vaisseau spatial.

La NASA espère continuer à collecter des données des deux vaisseaux spatiaux Voyager pendant encore plusieurs années, mais les ingénieurs s'attendent à ce que les sondes soient trop hors de portée pour communiquer d'ici une décennie environ, en fonction de la quantité d'énergie qu'elles peuvent générer. Voyager 2 est un peu en retard sur son jumeau et se déplace un peu plus lentement.

Dans environ 40 000 ans, les deux sondes passeront relativement près, en termes astronomiques, de deux étoiles. Voyager 1 s'approchera à moins de 1,7 années-lumière d'une étoile de la constellation de la Petite Ourse, tandis que Voyager 2 s'approchera à une distance similaire d'une étoile appelée Ross 248 dans la constellation d'Andromède. -Gardien

Continue Reading

science

Voyager 1 renvoie des données après que la NASA a réparé à distance une sonde vieille de 46 ans | espace

Published

on

Voyager 1 renvoie des données après que la NASA a réparé à distance une sonde vieille de 46 ans |  espace

Le vaisseau spatial le plus éloigné de la Terre, Voyager 1, a recommencé à communiquer correctement avec la NASA après que les ingénieurs ont travaillé pendant des mois pour réparer à distance la sonde vieille de 46 ans.

Le Jet Propulsion Laboratory (JPL) de la NASA, qui construit et exploite le vaisseau spatial robotique de l'agence, il a dit en décembre Que la sonde – à plus de 24 milliards de kilomètres de distance – envoyait un code absurde à la Terre.

dans Mise à jour publiée lundiLe JPL a annoncé que l'équipe de la mission a pu « après quelques investigations innovantes » obtenir des données utilisables sur la santé et l'état des systèmes d'ingénierie de Voyager 1. « La prochaine étape consiste à permettre au vaisseau spatial de recommencer à renvoyer des données scientifiques », a déclaré le JPL. Elle a ajouté que malgré le défaut, Voyager 1 fonctionnait normalement depuis le début.

Lancé en 1977, Voyager 1 a été conçu dans le but principal d'effectuer des études rapprochées de Jupiter et de Saturne au cours d'une mission de cinq ans. Cependant, son voyage s'est poursuivi et le vaisseau spatial approche désormais d'un demi-siècle d'exploitation.

Voyager 1 a pénétré dans l'espace interstellaire en août 2012, ce qui en fait le premier objet fabriqué par l'homme à quitter le système solaire. Il roule actuellement à 37 800 mph (60 821 km/h).

Le dernier problème était lié à l'un des trois ordinateurs à bord du vaisseau spatial, chargé de remplir les données scientifiques et techniques avant de les envoyer sur Terre. Incapable de réparer une puce cassée, l'équipe du JPL a décidé de déplacer le code endommagé ailleurs, une tâche difficile compte tenu de la technologie obsolète.

READ  Le MIT accueille la Fondation Heising-Simons 2023 51 Pegasi b Fellow Juliana García-Mejía | Nouvelles du MIT

Les ordinateurs de Voyager 1 et de sa sœur Voyager 2 disposaient de moins de 70 kilo-octets de mémoire au total, soit l'équivalent d'une image informatique à basse résolution. Ils utilisent de vieilles bandes numériques pour enregistrer des données.

Le correctif a été envoyé depuis la Terre le 18 avril, mais il a fallu deux jours pour évaluer s'il a réussi, car il faut environ 22 heures et demie pour qu'un signal radio atteigne Voyager 1 et encore 22 heures et demie pour la réponse à retourner dans l'espace. Atterrir. « Lorsque l'équipe de vol de la mission a reçu une réponse du vaisseau spatial le 20 avril, elle a constaté que la modification fonctionnait », a déclaré le JPL.

Voyager 1 et 2 ont fait de nombreuses découvertes scientifiques, notamment des enregistrements détaillés de Saturne et la révélation que Jupiter possède également des anneaux, ainsi qu'une activité volcanique active sur l'une de ses lunes, Io. Des sondes ont ensuite découvert 23 nouvelles lunes autour des planètes extérieures.

Parce que leur trajectoire les éloigne du Soleil, les sondes du Voyager sont incapables d'utiliser des panneaux solaires et convertissent à la place la chaleur générée par la désintégration radioactive naturelle du plutonium en électricité pour alimenter les systèmes du vaisseau spatial.

Dans environ 40 000 ans, les deux sondes passeront relativement près, en termes astronomiques, de deux étoiles. Voyager 1 s'approchera à moins de 1,7 années-lumière d'une étoile de la constellation de la Petite Ourse, tandis que Voyager 2 s'approchera à une distance similaire d'une étoile appelée Ross 248 dans la constellation d'Andromède.

Continue Reading

science

La mesure la plus précise jamais réalisée nous rapproche de la véritable masse de la particule « fantôme ».

Published

on

La mesure la plus précise jamais réalisée nous rapproche de la véritable masse de la particule « fantôme ».

La masse au repos des neutrinos fantômes est l’une des quantités les plus recherchées en physique des particules et les scientifiques sont sur le point de la localiser, grâce à une nouvelle expérience menée par des chercheurs de l’Institut Max Planck de physique nucléaire en Allemagne.

Si la masse des neutrinos est connue, cela pourrait ouvrir la porte à une physique au-delà du modèle standard de la physique des particules, qui décrit toutes les forces et particules élémentaires connues de l’univers.

Dire que les neutrinos sont étranges est un euphémisme. Autrefois suggéré qu'il n'y avait pas de masse du tout, il est désormais clair que cette particule à peine existante est en réalité composée de trois types en un, avec des identités oscillant dans un étrange flou quantique alors qu'elle se précipite dans l'espace. Cette faible identité signifie la masse, qui Il se présente sous différentes formesétalé sur l'apparence changeante du neutrino.

Parce qu’ils sont si légers et étranges, les neutrinos ne respectent peut-être pas les mêmes règles que les autres particules. L’ajout précis d’un échantillon de leurs masses incroyablement petites pourrait aider à confirmer et à exclure de nouveaux modèles en physique des particules.

Cependant, les physiciens ne peuvent pas peser des groupes de neutrinos stationnaires comme des raisins sur une balance. Au lieu de, Ils peuvent juste Confirmer l'existence Ces particules subatomiques en examinant leurs interactions avec d'autres particules, ou En mesurant les produits Leur décadence. C'est peut-être juste la particule Présent pour le plus bref instant Mais à ce moment-là, il laisse sa marque, ou une trace, à partir de laquelle les physiciens peuvent déduire la masse.

READ  Comment les corps errant dans l'espace interstellaire se sont retrouvés seuls: The Tribune India

Cependant, sans charge et pratiquement sans force gravitationnelle, les neutrinos n’exercent que les forces les plus faibles sur les autres particules. En fait, des milliards de neutrinos traversent votre corps en ce moment, la plupart provenant du Soleil, mais… Ils interagissent rarement Avec nous.

Cependant, ce n’est pas parce qu’ils ont peu d’effet sur les autres particules subatomiques que les neutrinos ne constituent pas une partie essentielle de la matière. qu'ils Les molécules les plus abondantes Qui ont une masse dans l'univers, et savoir ce qui donne à ces différences entre les neutrinos des masses si petites, non nulles, peut aider les physiciens à résoudre ou à comprendre certaines des divergences du modèle standard que présentent les neutrinos dans la façon dont ils oscillent.

Les physiciens améliorent régulièrement leurs meilleures estimations des limites supérieures des masses individuelles et collectives des neutrinos en utilisant différentes méthodes. La mesure la plus précise à ce jour d'une « saveur » appelée neutrino électronique a révélé qu'elle ne pouvait pas dépasser 0,8 MeV. Traduisant cela en masse en termes de 1 kilogramme (ou 2,2 livres), cela équivaut au poids de quatre raisins secs par rapport au soleil.

L'estimation la plus récente a été déterminée en février 2022 par l'expérience Karlsruhe Tritium Neutrino (Catherine) en Allemagne, a été déduite de la pulvérisation d'électrons et de neutrinos émise comme une forme super-lourde de désintégration de l'hydrogène.

Une autre façon d'obtenir la masse d'un neutrino, aussi légère soit-elle, consiste à étudier ce qui se passe lorsque le noyau atomique de l'isotope artificiel holmium-163 absorbe un électron de sa coque interne. En conséquence, un proton se transforme en neutron, du dysprosium-163 est produit et un neutrino est libéré.

READ  Comment les papillons de nuit créent des capes d'invisibilité qui empêchent la détection par les prédateurs à l'aide de biosonar

Les physiciens peuvent alors mesurer l'énergie totale libérée lors de cette désintégration à l'aide d'un type de calorimètre et en déduire la masse du neutrino « manquant » qui a volé dans l'éther en se basant sur la masse totale de l'atome et la célèbre équation d'Einstein, E = mc2.2Où masse et énergie sont égales.

Ceci est calculé comme ce qu'on appelle valeur x: Une différence d'énergie qui peut se traduire par la masse « perdue » de la somme des particules atomiques après une réaction de désintégration. Cette différence de masse est interprétée comme un neutrino.

Cependant, les atomes d'or dans lesquels l'holmium-163 est présent peuvent affecter cette réaction de désintégration, Il explique Christoph Schweiger, physicien à l'Institut Max Planck de physique nucléaire et auteur principal de la nouvelle étude.

« Il est donc important de mesurer la valeur Q le plus précisément possible à l'aide d'une méthode alternative et de la comparer à la valeur déterminée par calorimétrie afin de détecter d'éventuelles sources d'erreur systématiques. » Il dit.

Pour ce faire, Schweiger et ses collègues ont mis en place une expérience combinant cinq soi-disant Pièges à écrireempilés les uns sur les autres à l'intérieur d'un aimant supraconducteur placé sous vide et immergé dans de l'hélium liquide à environ 4 degrés Kelvin (-269,1 degrés Celsius ou -452,5 degrés Fahrenheit).

PENTATRAP se compose de cinq pièges à écriture empilés les uns sur les autres, comme le montre la tour centrale jaune. (MPI pour la physique nucléaire)

Tous ces efforts contribuent à protéger l’équipement afin qu’il soit suffisamment sensible pour capturer les particules dans les pièges de Penning et mesurer d’infimes différences d’énergie entre les ions chargés d’holmium-163 et de dysprosium-163.

« Avec un Airbus A-380 doté d'une charge utile maximale, vous pouvez utiliser cette sensibilité pour déterminer si une seule goutte d'eau s'est posée dessus », a déclaré Schweiger. Il dit.

READ  La NASA assurera une couverture en direct de l'astronaute américain qui a établi un record lors de son retour à bord d'un vaisseau spatial russe

En fait, les chercheurs ont mesuré les ions holmium-163 entrants et les ions dysprosium-163 résultants pour arriver à une valeur Q de 2863,2 ± 0,6 eVC.-2qui est 50 fois plus précise que la tension précédente, qui atteignait une valeur de 2833 ± 34 V C.-2.

L’utilisation d’une valeur Q plus précise et mesurée de manière indépendante en conjonction avec d’autres résultats expérimentaux « est essentielle pour évaluer les incertitudes systématiques dans la détermination de la masse des neutrinos », expliquent Schweiger et ses collègues. Écrire dans leur article publié.

Bien qu'il ne s'agisse que d'une pièce du puzzle, une résolution améliorée dans des mesures telles que Q peut être combinée à un large éventail de méthodes pour comprendre pourquoi les fantômes étranges et chatoyants du monde des particules se comportent comme des esprits frappeurs.

L'étude a été publiée dans Physique naturelle.

Continue Reading

Trending

Copyright © 2023