Connect with us

science

Résoudre une partie du « problème solaire »

Published

on

Résoudre une partie du « problème solaire »

Le modèle développé par les scientifiques comprend l’historique de la rotation du Soleil ainsi que l’instabilité magnétique qu’elle génère. Crédit : Sylvia Ekström/UNIGE

Une équipe internationale d’astronomes a réussi à développer un modèle pour résoudre une partie du « problème du soleil ».

Tout allait mal avec le soleil ! Un nouvel ensemble de données au début des années 2000 a abaissé l’abondance chimique à la surface du Soleil, contrairement aux niveaux prédits par les modèles standard utilisés par les astrophysiciens. Cette nouvelle abondance a souvent été remise en cause par plusieurs nouvelles analyses. Comme ils semblaient corrects, c’était aux modèles solaires de s’adapter, d’autant qu’ils servent de référence pour l’étude des étoiles en général. Une équipe d’astronomes de l’UNIGE en collaboration avec l’Université de Liège a développé un nouveau modèle théorique qui résout une partie du problème : en observant la rotation du Soleil, qui a évolué dans le temps, et les champs magnétiques qu’il génère, ils ont pu expliquer la composition chimique du Soleil. Les résultats de cette étude ont été publiés dans la revue Nature Astronomy.

« Le Soleil est l’astre que l’on discerne le mieux, il constitue donc un test essentiel de notre compréhension de la physique stellaire. explique Patrick Egenberger, chercheur au Département d’astronomie de l’Université de Genève, Suisse (UNIGE) et premier auteur de la étude.

Ces observations devraient être cohérentes avec les résultats prédits par les modèles théoriques visant à expliquer l’évolution du Soleil. Comment le soleil brûle-t-il l’hydrogène dans le cœur ? Comment l’énergie y est-elle produite puis transférée vers la surface ? Comment les éléments chimiques dérivent-ils à l’intérieur du soleil, affectés par la rotation et les champs magnétiques ?

Modèle standard solaire

« Le modèle solaire standard que nous avons utilisé jusqu’à présent considère notre étoile de manière très simplifiée, d’une part en termes de transport d’éléments chimiques dans les couches profondes, et d’autre part la rotation et les champs magnétiques internes qui ont complètement négligée jusqu’à présent », explique Gail Boldgen, chercheuse au Département d’astronomie de l’UNIGE et co-auteur de l’étude.

Cependant, tout s’est bien passé jusqu’au début des années 2000, lorsqu’une équipe scientifique internationale a procédé à une révision drastique de l’abondance de l’énergie solaire grâce à une analyse améliorée. La nouvelle abondance a provoqué de profondes ondulations dans les eaux de modélisation solaire. Depuis, aucun modèle n’a pu reproduire les données obtenues par l’héliosmologie (analyse des oscillations du soleil), en particulier l’abondance d’hélium dans l’héliosphère.

Un nouveau modèle et le rôle principal de la rotation et des champs magnétiques

Le nouveau modèle solaire développé par l’équipe de l’UNIGE inclut non seulement l’évolution du spin qui a pu être plus rapide dans le passé, mais aussi l’instabilité magnétique qu’il a créée. « Il faut absolument réfléchir aux effets de la rotation et des champs magnétiques sur le transport des éléments chimiques dans nos modèles stellaires. C’est aussi important pour le Soleil que pour la physique stellaire en général et a un impact direct sur l’évolution chimique de l’atmosphère. l’univers, puisque les éléments chimiques nécessaires à la vie sur Terre sont concoctés au cœur des étoiles ,  » .

Le nouveau modèle prédit non seulement correctement la concentration d’hélium dans les couches externes du Soleil, mais reflète également la concentration de lithium qui a résisté à la modélisation jusqu’à présent. « L’abondance de l’hélium est correctement reproduite par le nouveau modèle car la rotation interne du Soleil imposée par les champs magnétiques génère un mélange turbulent qui empêche cet élément de tomber trop rapidement vers le centre de l’étoile ; parallèlement, l’abondance de le lithium observé à la surface du Soleil est également reproduit car ce mélange le transporte lui-même vers des points chauds où il est détruit », explique Patrick Egenberger

Le problème n’a pas été complètement résolu

Cependant, le nouveau modèle ne résout pas tous les défis posés par l’hélioscience : « Grâce à l’hélioscience, on sait à 500 km dans quelle région commencent les mouvements convectifs de la matière, à 195 000 km sous la surface du Soleil. Cependant, les modèles théoriques de la Soleil prédit une profondeur C’est 10 000 kilomètres ! », explique Sebastian Salmon, chercheur à l’UNIGE et co-auteur de l’article. Si le problème persiste dans le nouveau paradigme, il ouvre une nouvelle porte à la compréhension : « Grâce au nouveau paradigme, nous mettons en lumière des processus physiques qui peuvent nous aider à résoudre cette différence cruciale.

Mise à jour des étoiles semblables au soleil

« Il va falloir revoir les masses, rayons et âges obtenus pour les étoiles de type solaire que nous avons étudiées jusqu’à présent », précise Gaël Buldgen, en détaillant les étapes suivantes. En fait, dans la plupart des cas, la physique solaire est transférée à des études de cas proches du Soleil. Par conséquent, si les modèles d’analyse du Soleil sont modifiés, cette mise à jour devrait également être effectuée pour d’autres étoiles similaires à la nôtre.

Patrick Eggenberger précise : « Cela est particulièrement important si l’on veut mieux caractériser les étoiles hôtes des planètes, par exemple dans le cadre de la mission PLATO. » Cet observatoire de 24 télescopes doit s’envoler vers le point de Lagrange 2 (à 1,5 million de km de la Terre, face au Soleil) en 2026 pour découvrir et caractériser des planètes mineures et améliorer les propriétés de leur étoile hôte.

Référence : « The Sun’s internal rotation and its correlation with the solar surface Li and He » par P. Eggenberger, G. Buldgen, SJAJ Salmon, A. Noels, N. Grevesse et M. Asplund, 26 mai 2022, astronomie naturelle.
DOI : 10.1038 / s41550-022-01677-0

READ  Le surf fait courir les canards
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Trois lancements de missiles spéciaux à surveiller

Published

on

Trois lancements de missiles spéciaux à surveiller

Avez-vous vu le lancement du Starship de SpaceX plus tôt ce mois-ci ? Si cela a aiguisé votre appétit pour des lancements de fusées plus avancés, alors vous avez de la chance car cet été verra trois autres lancements de grande envergure.

Attendez-vous à une rare sortie de la fusée Falcon Heavy de SpaceX, au lancement de la première nouvelle fusée et à une tentative d’envoyer des astronautes plus loin dans l’espace que jamais depuis les missions Apollo de la NASA au début des années 1970.

Voici tout ce que vous devez savoir – et les dates de votre agenda.

Mardi 25 juin : Rare lancement et atterrissage tandem

Mission : SpaceX Falcon Heavy lance le satellite GOES-U de la NOAA.

Où regarder : SpaceX site Web ou Chaîne Youtube.

La dixième fusée SpaceX Falcon Heavy sera lancée aujourd’hui depuis le Kennedy Space Center en Floride, mettant en orbite un satellite météorologique NASA/NOAA GOES-U. GOES-U est unique en ce sens qu’il dispose d’un coronographe qui image mystérieusement l’atmosphère extérieure la plus chaude du Soleil, aidant ainsi les physiciens solaires à prédire avec plus de précision la météo spatiale.

Falcon Heavy est un lanceur lourd partiellement réutilisable, et le point culminant sera de voir ses deux propulseurs atterrir côte à côte sur deux plateformes côte à côte.

La NASA et SpaceX visent une fenêtre de lancement de deux heures qui s’ouvrira à 17 h 16 HNE le mardi 25 juin, mais gardez un œil sur SpaceX se nourrit de X Pour un timing précis.

Mardi 9 juillet : Une nouvelle fusée puissante décolle pour la première fois dans le ciel

Mission : Lancer pour la première fois la nouvelle fusée géante en Europe.

Où regarder : Agence spatiale européenne site Web ou Chaîne Youtube.

L’Agence spatiale européenne a confirmé le premier lancement de la sonde Ariane 6 depuis le port spatial européen en Guyane française.

Le nouveau lanceur lourd européen remplace Ariane 5 et dispose d’un étage supérieur rallumable, qui lui permettra de lancer plusieurs missions sur différentes orbites en un seul vol.

Vendredi 12 juillet : Polaris Dawn atteint 870 milles au-dessus de la Terre

Mission : SpaceX Falcon 9 lancera un équipage commercial de quatre astronautes privés dans l’espace à bord d’une capsule Dragon.

Où regarder : SpaceX site Web ou Chaîne Youtube.

Le programme Polaris est un partenariat avec SpaceX qui verra jusqu’à trois missions de vols spatiaux habités pour démontrer de nouvelles technologies. Elle est dirigée par Jared Isaacman, fondateur de Shift4 Payments, parti dans l’espace en tant que commandant de la mission SpaceX Inspiration4 en septembre 2021.

Cette première mission, « Polaris Dawn », verra le vaisseau spatial Dragon avec quatre astronautes (Isaacman, Scott Poteet, Sarah Gillies et Anna Menon) voler à 870 milles au-dessus de la Terre, le niveau le plus élevé depuis les missions Apollo sur la Lune.

Suis-moi Twitter/X Et Instagram.

Récupère mes livres Observation des étoiles en 2024, Programme d’observation des étoiles pour débutants Et Quand aura lieu la prochaine éclipse ?

Je vous souhaite un ciel clair et des yeux écarquillés.

READ  Un mystère alors que les météorologues explorent une étrange « boule de feu » verte dans le ciel de l’Irlande et de Tipperary
Continue Reading

science

Une source de cristaux liquides de paires de photons

Published

on

La conversion ascendante paramétrique spontanée (SPDC), en tant que source de photons intriqués, présente un grand intérêt pour la physique quantique et la technologie quantique, mais jusqu’à présent, elle ne peut être mise en œuvre que dans des matériaux solides. Des chercheurs de l’Institut Max Planck pour la science de la lumière (MPL) et de l’Institut Josef Stefan de Ljubljana, en Slovénie, ont démontré pour la première fois la SPDC dans un cristal liquide. Les résultats ont été récemment publiés dans natureouvrent la voie à une nouvelle génération de sources quantiques : efficaces et accordables par champs électriques.

Diviser un photon en deux est l’un des outils les plus utiles en photonique quantique. Il peut créer des paires de photons intriqués, des photons uniques, de la lumière compressée et des états photoniques encore plus complexes, essentiels aux technologies photoniques quantiques. Ce processus est connu sous le nom de conversion abaisseur automatique (SPDC).

Le SPDC est étroitement lié à la symétrie centrale. Il s’agit de la symétrie par rapport à un point – par exemple, un carré est symétrique au centre mais pas un triangle. Essentiellement, en divisant un photon en deux, le SPDC brise la symétrie centrale. Par conséquent, cela n’est possible que dans les cristaux dont la cellule primaire est asymétrique au centre. La SPDC ne peut pas se produire dans les liquides ou les gaz ordinaires, car ces matériaux sont isotropes.

Cependant, des chercheurs ont récemment découvert des cristaux liquides de structure différente, appelés cristaux liquides nématiques ferroélectriques. Bien qu’ils soient fluides, ces matériaux se caractérisent par une forte rupture de symétrie centrale. Leurs molécules sont allongées, asymétriques et surtout, elles peuvent être réorientées par un champ électrique externe. La réorientation des molécules modifie la polarisation des paires de photons générées, ainsi que le taux de génération. Avec un conditionnement approprié, un échantillon de ces matériaux peut constituer un dispositif extrêmement utile car ils produisent efficacement des paires de photons, peuvent être facilement réglés à l’aide d’un champ électrique et peuvent être intégrés dans des dispositifs plus complexes.

READ  Les chercheurs pensent que des empreintes de dinosaures datant de 200 millions d'années ont été découvertes sur la côte du Pays de Galles

À l’aide d’échantillons préparés à l’Institut Josef Stefan (Ljubljana, Slovénie) à partir de cristaux liquides nématiques ferroélectriques fabriqués par Merck Electronics KGaA, des chercheurs de l’Institut Max Planck pour la science de la lumière ont appliqué pour la première fois la SPDC à un cristal liquide. . L’efficacité de génération de photons intriqués est aussi élevée que celle des meilleurs cristaux non linéaires, tels que le niobate de lithium, d’épaisseur similaire. En appliquant un champ électrique de quelques volts seulement, ils ont pu activer et désactiver la génération de paires de photons, ainsi que modifier les propriétés de polarisation de ces paires. Cette découverte marque le début d’une nouvelle génération de sources lumineuses quantiques : flexibles, accordables et efficaces.

Continue Reading

science

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Published

on

Le framework CUISINES pour les projets de comparaison de modèles exoplanétaires, version 1.0

Illustration de la conception expérimentale générale du CREME exoMIP (Tsigaridis et al. en préparation), comme exemple de la façon dont l’exoMIP peut être structuré pour permettre une large participation communautaire. — Ph.EP astronomique

Alors que le télescope spatial James Webb commence à renvoyer des observations, il est plus important que jamais que les modèles climatiques exoplanétaires soient capables de prédire de manière cohérente et correcte l’observabilité des exoplanètes, de récupérer leurs données et d’interpréter les environnements planétaires à partir de ces données.

Les comparaisons entre modèles jouent un rôle crucial dans ce contexte, surtout à l’heure où peu de données sont disponibles pour valider les prédictions des modèles. Le groupe de travail CUISINES du Nexus for Exoplanet System Science (NExSS) de la NASA soutient une approche systématique pour évaluer les performances des modèles d’exoplanètes et fournit ici un cadre pour mener des projets d’intercomparaison de modèles d’exoplanètes organisés par la communauté (exoMIP).

Le cadre CUISINES adapte spécifiquement les pratiques de la communauté climatique terrestre pour répondre aux besoins des chercheurs exoplanétaires, y compris une gamme de types de modèles, de cibles planétaires et d’études spatiales paramétriques. Son objectif est d’aider les chercheurs à travailler collectivement, équitablement et ouvertement pour atteindre des objectifs communs.

Le cadre CUISINES repose sur cinq principes : 1) Définir à l’avance la ou les questions de recherche que exoMIP vise à aborder. 2) Créer une conception pilote qui maximise la participation de la communauté et en faire la publicité largement. 3) Planifiez un calendrier de projet qui permet à tous les membres d’exoMIP de participer pleinement. 4) Créer des produits de données à partir des résultats du modèle pour une comparaison directe avec les observations. 5) Créez un plan de gestion des données applicable aujourd’hui et évolutif à l’avenir.

READ  Le surf fait courir les canards

Au cours des premières années de son existence, CUISINES fournit déjà un soutien logistique à 10 exoMIP et continuera à organiser des ateliers annuels pour approfondir les commentaires de la communauté et présenter de nouvelles idées d’exoMIP.

Linda E. Sohl, Thomas J. Fuchez, Sean Domagal-Goldman, Duncan A. Christie, Russell Detrick, Jacob Haque-Misra, C.E. Harman, Nicholas Iero, Nathan J. Mayne, Costas Tsigarides, Geronimo L. Villanueva, Ambre V. Jeune, Guillaume Chaverot

Commentaires : 14 pages, deux numéros
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP) ; Instruments et méthodes astrophysiques (astro-ph.IM)
Citer comme : arXiv:2406.09275 [astro-ph.EP] (ou arXiv :2406.09275v1 [astro-ph.EP] pour cette version)
Date de soumission
Qui : Linda Suhl
[v1] Jeudi 13 juin 2024, 16:14:22 UTC (903 Ko)
https://arxiv.org/abs/2406.09275
Astrobiologie

Continue Reading

Trending

Copyright © 2023