Connect with us

science

Une nouvelle hypothèse pour les scientifiques du MIT sur l’un des plus grands mystères de la science

Published

on

Une nouvelle hypothèse pour les scientifiques du MIT sur l’un des plus grands mystères de la science

Il y a environ 2,3 milliards d’années, l’oxygène a commencé à s’accumuler dans l’atmosphère, atteignant finalement les niveaux vitaux que nous respirons aujourd’hui. Une nouvelle hypothèse proposée par des scientifiques du MIT suggère un mécanisme expliquant comment cela pourrait se produire. Sur la photo, des exemples d’organismes anciens. Crédit : MIT News

Des microbes et des minéraux pourraient avoir libéré l’oxygène de la Terre

Les scientifiques proposent un nouveau mécanisme par lequel l’oxygène peut se former pour la première fois dans l’atmosphère.

Au cours des 2 premiers milliards d’années de l’histoire de la Terre, il n’y avait pratiquement pas d’oxygène dans l’air. Alors que certains microbes effectuaient la photosynthèse vers la fin de cette période, l’oxygène ne s’était pas encore accumulé à des niveaux qui affecteraient la biosphère mondiale.

Mais il y a environ 2,3 milliards d’années, cet équilibre stable et pauvre en oxygène s’est déplacé et l’oxygène a commencé à s’accumuler dans l’atmosphère, atteignant finalement les niveaux vitaux que nous respirons aujourd’hui. Cette fuite rapide est connue sous le nom de Great Oxygenation Event, ou GOE. Ce qui a déclenché l’événement et sorti la planète de votre funk à faible teneur en oxygène est l’un des plus grands mystères de la science.

Une nouvelle hypothèse, proposée par[{ » attribute= » »>MIT scientists, suggests that oxygen finally started accumulating in the atmosphere thanks to interactions between certain marine microbes and minerals in ocean sediments. These interactions helped prevent oxygen from being consumed, setting off a self-amplifying process where more and more oxygen was made available to accumulate in the atmosphere.

The scientists have laid out their hypothesis using mathematical and evolutionary analyses, showing that there were indeed microbes that existed before the GOE and evolved the ability to interact with sediment in the way that the researchers have proposed.

READ  Les astronautes de SpaceX Crew-2 ne peuvent pas utiliser les toilettes spatiales lors de leur vol de retour

Their study, appearing today in Nature Communications, is the first to connect the co-evolution of microbes and minerals to Earth’s oxygenation.

“Probably the most important biogeochemical change in the history of the planet was oxygenation of the atmosphere,” says study author Daniel Rothman, professor of geophysics in MIT’s Department of Earth, Atmospheric, and Planetary Sciences (EAPS). “We show how the interactions of microbes, minerals, and the geochemical environment acted in concert to increase oxygen in the atmosphere.”

The study’s co-authors include lead author Haitao Shang, a former MIT graduate student, and Gregory Fournier, associate professor of geobiology in EAPS.

A step up

Today’s oxygen levels in the atmosphere are a stable balance between processes that produce oxygen and those that consume it. Prior to the GOE, the atmosphere maintained a different kind of equilibrium, with producers and consumers of oxygen in balance, but in a way that didn’t leave much extra oxygen for the atmosphere.

What could have pushed the planet out of one stable, oxygen-deficient state to another stable, oxygen-rich state?

“If you look at Earth’s history, it appears there were two jumps, where you went from a steady state of low oxygen to a steady state of much higher oxygen, once in the Paleoproterozoic, once in the Neoproterozoic,” Fournier notes. “These jumps couldn’t have been because of a gradual increase in excess oxygen. There had to have been some feedback loop that caused this step-change in stability.”

He and his colleagues wondered whether such a positive feedback loop could have come from a process in the ocean that made some organic carbon unavailable to its consumers. Organic carbon is mainly consumed through oxidation, usually accompanied by the consumption of oxygen — a process by which microbes in the ocean use oxygen to break down organic matter, such as detritus that has settled in sediment. The team wondered: Could there have been some process by which the presence of oxygen stimulated its further accumulation?

READ  La NASA a retardé le lancement de Psyché. Voici la raison de ce gros problème

Shang and Rothman worked out a mathematical model that made the following prediction: If microbes possessed the ability to only partially oxidize organic matter, the partially-oxidized matter, or “POOM,” would effectively become “sticky,” and chemically bind to minerals in sediment in a way that would protect the material from further oxidation. The oxygen that would otherwise have been consumed to fully degrade the material would instead be free to build up in the atmosphere. This process, they found, could serve as a positive feedback, providing a natural pump to push the atmosphere into a new, high-oxygen equilibrium.

“That led us to ask, is there a microbial metabolism out there that produced POOM?” Fourier says.

In the genes

To answer this, the team searched through the scientific literature and identified a group of microbes that partially oxidizes organic matter in the deep ocean today. These microbes belong to the bacterial group SAR202, and their partial oxidation is carried out through an enzyme, Baeyer-Villiger monooxygenase, or BVMO.

The team carried out a phylogenetic analysis to see how far back the microbe, and the gene for the enzyme, could be traced. They found that the bacteria did indeed have ancestors dating back before the GOE, and that the gene for the enzyme could be traced across various microbial species, as far back as pre-GOE times.

What’s more, they found that the gene’s diversification, or the number of species that acquired the gene, increased significantly during times when the atmosphere experienced spikes in oxygenation, including once during the GOE’s Paleoproterozoic, and again in the Neoproterozoic.

READ  L'énorme fusée SLS de la NASA est à un essai du lancement

“We found some temporal correlations between diversification of POOM-producing genes, and the oxygen levels in the atmosphere,” Shang says. “That supports our overall theory.”

To confirm this hypothesis will require far more follow-up, from experiments in the lab to surveys in the field, and everything in between. With their new study, the team has introduced a new suspect in the age-old case of what oxygenated Earth’s atmosphere.

“Proposing a novel method, and showing evidence for its plausibility, is the first but important step,” Fournier says. “We’ve identified this as a theory worthy of study.”

Reference: “Oxidative metabolisms catalyzed Earth’s oxygenation” by Haitao Shang, Daniel H. Rothman and Gregory P. Fournier, 14 March 2022, Nature Communications.
DOI: 10.1038/s41467-022-28996-0

This work was supported in part by the mTerra Catalyst Fund and the National Science Foundation.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le rover Curiosity de la NASA a accidentellement découvert des cristaux de soufre pur sur Mars

Published

on

Le rover Curiosity de la NASA a accidentellement découvert des cristaux de soufre pur sur Mars

Des scientifiques de la NASA affirment que du soufre pur a été découvert sur Mars pour la première fois après que le rover Curiosity ait accidentellement découvert un amas de cristaux jaunes lors de son passage au-dessus d’un rocher. La zone semble pleine de soufre. C’est une découverte inattendue : alors que des minéraux contenant du soufre ont été observés sur la planète rouge, le soufre élémentaire n’a jamais été observé seul auparavant. « Le soufre ne se forme que dans une gamme étroite de conditions que les scientifiques n’ont pas liées à l’histoire de ce site », ont déclaré les scientifiques de la NASA. .

Le rover Curiosity a réussi à fendre la roche le 30 mai alors qu’il traversait une zone connue sous le nom de canal Gedes Valles, où des roches similaires ont été vues partout. On pense que le canal a été creusé il y a longtemps par l’eau et les coulées de débris. « Trouver un champ de pierres faites de soufre pur, c’est comme trouver une oasis dans le désert », a déclaré Ashwin Vasavada, scientifique du projet Curiosity. « Il ne devrait pas être là, alors maintenant nous devons l’expliquer. C’est la découverte de choses étranges et inattendues. rend l’exploration planétaire extrêmement passionnante.

Une roche sur laquelle Curiosity est passée s'est fissurée, révélant des cristaux de soufre jaunes

Programme NASA/JPL/Caltech/Cyberscience et sécurité

Après avoir repéré les cristaux jaunes, l’équipe a ensuite utilisé une caméra montée sur le bras robotique de Curiosity pour les examiner de plus près. Le rover a ensuite échantillonné une autre roche à proximité, où les morceaux de roche qu’il a brisés étaient trop fragiles pour être forés. Le rover Curiosity est équipé d’instruments qui lui permettent d’analyser la composition des roches et du sol, et la NASA affirme que le spectromètre à rayons X de particules alpha (APXS) a confirmé qu’il avait trouvé du soufre élémentaire.

READ  Notre étude du ciel révèle les secrets de la naissance des planètes
Continue Reading

science

Des signes de vie pourraient être trouvés près de la surface de deux lunes proches.

Published

on

Des signes de vie pourraient être trouvés près de la surface de deux lunes proches.

Les preuves s’accumulent selon lesquelles la vie pourrait théoriquement continuer à exister sur deux lunes actuellement en orbite autour de planètes de notre système solaire.Les scientifiques ont fait un certain nombre de découvertes qui suggèrent que la lune glacée de Jupiter, Europe, et la lune de Saturne, Encelade, contiennent les conditions nécessaires à la vie. Ces conditions incluent la production de quantités abondantes de Oxygène Sur les océans liquides de la surface et du sous-sol d’Europe sur les deux lunes. Le phosphore, élément vital à la vie, présente de nombreux bienfaits. est trouvé Dans les colonnes de glace et d’eau émises par Encelade.

Or, une récente expérience de la NASA a révélé que si la vie existe sur ces lunes, ses signes, tels que les molécules organiques telles que les acides aminés ou nucléaires, peuvent être détectés beaucoup plus près de la surface qu’on ne le pensait auparavant, malgré d’énormes niveaux de rayonnement. C’est une bonne nouvelle pour toutes les futures missions qui rechercheront des signes de vie partageant l’attraction gravitationnelle de notre Soleil, car les véhicules robotiques n’auront pas besoin de creuser aussi profondément pour les trouver.

« Sur la base de nos expériences, la profondeur d’échantillonnage « sûre » pour les acides aminés sur Europe est d’environ 8 pouces aux hautes latitudes de l’hémisphère tardif (l’hémisphère opposé à la direction du mouvement d’Europe autour de « Jupiter) dans la région où la surface n’a pas été détectée ». été très perturbé par les impacts de météorites. Dans un communiqué de presse« La détection des acides aminés sur Encelade ne nécessite pas d’échantillonnage souterrain ; ces molécules survivront à la désintégration radioactive n’importe où sur la surface d’Encelade à moins d’un dixième de pouce (moins de quelques millimètres) de la surface. »

READ  Comment les corps errant dans l'espace interstellaire se sont retrouvés seuls: The Tribune India

Pour arriver à cette conclusion, Pavlov et ses collègues ont pris des acides aminés et les ont mélangés avec de la glace ultra froide – 321 degrés Fahrenheit en dessous de zéro. D’autres échantillons ont été mélangés non seulement à de la glace mais aussi à de la poussière de silicate pour simuler la présence éventuelle de matière provenant de météorites ou des profondeurs de la Lune. Les échantillons, scellés dans des flacons sans air, ont été exposés aux rayons gamma, une forme de rayonnement dangereuse. Certains autres échantillons ont également testé l’effet des acides aminés s’ils étaient cultivés dans des bactéries mortes, simulant la possibilité d’une vie microscopique sur Encelade et Europe.

Les résultats ont été publiés dans la revue AstrobiologieL’étude a montré le taux de décomposition des acides aminés dans ces conditions, et il s’avère que ces acides sont capables de survivre suffisamment longtemps pour être surveillés par une mission d’atterrissage. Mais aucune mission de ce type n’est prévue pour l’instant pour aucun des deux satellites.

« La lenteur de la destruction des acides aminés dans les échantillons biologiques dans des conditions de surface similaires à celles d’Europe et d’Encelade renforce l’argument en faveur de futures mesures de détection de vie par des missions d’atterrissage sur Europe et Encelade », a déclaré Pavlov. « Nos résultats indiquent que les taux de décomposition des biomolécules organiques potentielles dans les régions riches en silice d’Europe et d’Encelade sont plus élevés que ceux de la glace pure, et par conséquent, les futures missions potentielles vers Europe et Encelade devraient être prudentes dans l’échantillonnage des sites riches en silice. sur les deux lunes.

READ  Un thermomètre interne indique aux graines quand germer

Continue Reading

science

Concevoir des cellules pour diffuser leur comportement peut aider les scientifiques à étudier leur fonctionnement interne

Published

on

Concevoir des cellules pour diffuser leur comportement peut aider les scientifiques à étudier leur fonctionnement interne

Les vagues sont Répandu dans la nature et la technologieQu’il s’agisse de la montée et de la descente des marées océaniques ou du balancement d’un pendule d’horloge, les rythmes prévisibles des vagues créent un signal qui peut être facilement suivi et distingué des autres types de signaux.

Les appareils électroniques utilisent des ondes radio pour envoyer et recevoir des données, comme un ordinateur portable, un routeur Wi-Fi ou un téléphone mobile et une tour de téléphonie cellulaire. De même, les scientifiques peuvent utiliser un autre type d’onde pour transmettre un autre type de données : des signaux provenant de processus et de dynamiques invisibles qui sous-tendent la manière dont les cellules prennent leurs décisions.

je Biologiste synthétiqueEt le mien Groupe de recherche La technologie a été développée Il envoie une vague de protéines génétiquement modifiées Voyagez à travers la cellule humaine pour ouvrir une fenêtre sur les activités cachées qui fournissent de l’énergie aux cellules lorsqu’elles sont en bonne santé et qui nuisent aux cellules lorsqu’elles sont hors de contrôle.

Les ondes peuvent être modifiées pour transporter différents types d’informations, comme la radio FM et AM.

Les vagues sont un puissant outil d’ingénierie

Le comportement oscillatoire des ondes est l’une des raisons pour lesquelles elles constituent des motifs géométriques si puissants.

Par exemple, des changements contrôlables et prévisibles dans les oscillations des ondes peuvent être utilisés pour coder des données, telles que des informations audio ou vidéo. Dans le cas d Radio à chaque station Il se voit attribuer une onde électromagnétique unique qui oscille à sa propre fréquence. Ce sont les chiffres que vous voyez sur le cadran de la radio.

READ  Une nouvelle étude sur le mégalodon suscite une controverse sur la taille du requin éteint

Les scientifiques peuvent étendre cette stratégie aux cellules vivantes. Mon équipe l’a utilisé Des vagues de protéines Transformer la cellule en une station radio microscopique qui diffuse en temps réel des données sur son activité pour étudier son comportement.

Animation d'ondes cyan et magenta formant une spirale

Les protéines bactériennes MinD (cyan) et MinE (magenta) peuvent s’organiser en motifs hélicoïdaux.

Convertir les cellules en stations de radio

L’étude de l’intérieur des cellules nécessite un type d’onde capable de communiquer et d’interagir spécifiquement avec les mécanismes et composants cellulaires.

Alors que les appareils électroniques sont constitués de fils et de transistors, les cellules sont construites et contrôlées par divers éléments chimiques. On les appelle des protéinesLes protéines remplissent diverses fonctions à l’intérieur de la cellule, depuis l’extraction de l’énergie du sucre jusqu’à déterminer si la cellule doit croître ou non.

Les ondes protéiques sont généralement rares dans la nature, mais certaines bactéries génèrent naturellement des ondes de deux protéines appelées Esprit et pensée – Ils sont souvent appelés ensemble MinDE – pour les aider à se diviser. Mon équipe a découvert que l’introduction de MinDE dans des cellules humaines provoque la réorganisation des protéines en un éventail surprenant de… Vagues et motifs.

Les ondes protéiques MinDE à elles seules n’interagissent pas avec d’autres protéines dans les cellules humaines. Cependant, nous avons constaté que MinDE peut être Conçu facilement Interagir avec l’activité de protéines humaines spécifiques responsables de la prise de décisions concernant la croissance, la signalisation aux cellules voisines, le mouvement et la division.

La dynamique des protéines qui déterminent ces fonctions cellulaires est difficile à détecter et à étudier dans les cellules vivantes, car l’activité des protéines est généralement invisible, même aux microscopes de grande puissance. Perturber ces modèles protéiques il est dans L’essence de beaucoup Cancers et troubles de la croissance.

Nous avons modélisé les liens entre les ondes protéiques MinDE et l’activité des protéines responsables des processus cellulaires clés. Or, l’activité de ces protéines provoque des changements dans la fréquence ou l’amplitude de l’onde protéique, tout comme la radio AM/FM. À l’aide de microscopes, nous pouvons détecter et enregistrer les signaux uniques diffusés par des cellules individuelles, puis les décoder pour récupérer la dynamique de ces processus cellulaires.

Nous commençons tout juste à explorer la manière dont les scientifiques utilisent les ondes protéiques pour étudier les cellules. Si l’histoire des vagues dans la technologie est une indication, leur potentiel est énorme.

Cet article a été republié à partir de Conversation Sous licence Creative Commons. Lire Article original.

Conversation

Continue Reading

Trending

Copyright © 2023