Connect with us

science

Utilisation d’un champ acoustique pour créer un réseau conducteur de métaux liquides dans un polymère

Published

on

Utilisation d’un champ acoustique pour créer un réseau conducteur de métaux liquides dans un polymère
Rapporter et ses déformations sous étirement. (a) Images SEM de LMP Rapporter formé par l’onde sonore. Les blocs blancs indiquent un LMP nouvellement synthétisé nano Parmi les LMP de grande taille (2 ~ 3 µm). (B) Images SEM de LMP étendu à 100 % Rapporter . Les LMP surdimensionnés sont déformés par la déformation et le LMP nano Le nouvellement synthétisé est intact, donc la voie de filtration du LMP est préservée Rapporter . le crédit: les sciences (2022). DOI : 10.1126 / science.abo6631″ width= »497″ height= »530″/>

Images SEM pour LMPRéseau et leurs déformations sous étirement. (a) Images SEM de LMPRéseau formé par l’onde sonore. Les blocs blancs indiquent un LMP nouvellement synthétisénano Parmi les grandes tailles (2~3 μm). (B) Images SEM de LMP étiré à 100 %Réseau. Les LMP surdimensionnés sont déformés par le stress et les LMP nouvellement synthétisésnano intacte, donc le chemin de filtration LMPRéseau Il est préservé. lui attribue : les sciences (2022). DOI : 10.1126 / science.abo6631

Une équipe de chercheurs du Korea Advanced Institute of Science and Technology, en collaboration avec un collègue de l’Institut des sciences fondamentales, tous deux en République de Corée, a trouvé un moyen simple de créer un réseau électronique à l’intérieur d’un polymère. Ils ont utilisé un champ sonore pour connecter les points de métal liquide.

Dans leur article publié dans le magazine les sciences, le groupe décrit leur technique et ses utilisations possibles. Ruirui Qiao et Shi Yang Tang de l’Université du Queensland en Australie et de l’Université de Birmingham au Royaume-Uni, respectivement, ont publié un article de perspective dans le même journal décrivant le travail effectué par l’équipe.

En tant que tel des appareils portables Devenus grand public, les consommateurs ont exigé plus de facilité d’utilisation. Un tel appel est que les dispositifs soient pliables et/ou extensibles. On pense qu’un tel changement les fera tenir plus facilement et naturellement dans les poches ou les sacs à main – et ils peuvent également être plus confortables dans les mains.

Crédit : Wonbiom Lee et al., les sciences (2022). DOI : 10.1126 / science.abo6631

Mais faire plier ou étirer l’électronique est difficile car les circuits à l’intérieur doivent également se plier ou s’étirer. Cela représente un défi car les matériaux pliables ne sont généralement pas bons pour conduire l’électricité. Pour résoudre ce problème, les chercheurs ont cherché à métaux liquides.

Mais cela a également causé des problèmes. Ces métaux réagissent normalement avec l’oxygène, entraînant la formation d’une peau d’oxyde, qui est non conductrice. Dans la nouvelle étude, les chercheurs ont trouvé un moyen de contourner ce problème en utilisant un champ acoustique pour créer un pont entre les gouttelettes de métal liquide, qui ont ensuite été incorporées dans un polymère.

Pour créer un réseau électronique à l’aide de leur technologie, les chercheurs ont imprimé des gouttelettes métalliques liquides de gallium sur une surface tout en appliquant un champ acoustique. Les vibrations du champ ont conduit à la formation de petites gouttelettes qui forment un pont entre les plus grosses gouttelettes, permettant la formation d’un réseau conducteur – et cela a permis la construction d’un circuit. Après la formation de peau d’oxyde, le métal liquide réseau Il a été intégré dans un polymère pliable/étirable.

Le résultat était un cercle qui pouvait être plié et étiré. Les tests ont montré que sous pression, des billes de métal liquide individuelles se dilataient en ovales, permettant au circuit de continuer à conduire l’électricité.

Plus d’information:
Wonbeom Lee et al, permet l’assemblage global de particules de métal liquide dans des polymères de circuits imprimés flexibles, les sciences (2022). DOI : 10.1126 / science.abo6631

Ruirui Qiao et al, Conduction des métaux liquides avec le son, les sciences (2022). DOI : 10.1126 / science.ade1813

© 2022 Réseau Science X

la citation: Utilisation d’un champ acoustique pour créer un réseau conducteur d’un métal liquide à l’intérieur d’un polymère (2022, 11 novembre) Récupéré le 11 novembre 2022 sur https://techxplore.com/news/2022-11-acoustic-field-l Liquid -métal-réseau. langage de programmation

Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.

READ  La NASA pourrait utiliser le vaisseau SpaceX pour sauver 3 membres d'équipage bloqués sur la Station spatiale internationale
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Ce ver effrayant a une vision exceptionnelle, et les scientifiques ne savent pas pourquoi : ScienceAlert

Published

on

Ce ver effrayant a une vision exceptionnelle, et les scientifiques ne savent pas pourquoi : ScienceAlert

Il existe des globes oculaires étranges dans le règne animal au sens large, mais il existe un type de ver marin qui déroute les scientifiques.

On les appelle vers polychètes et leurs yeux sont tout simplement énormes. Ensemble, les yeux pèsent 20 fois plus que le reste de la tête de l'animal. Pour l'humaincela représenterait environ 50 kg (110 lb) par œil.

Nous connaissons ces mirettes géantes depuis un certain temps ; Ce que les scientifiques voulaient savoir, c'était ce que les vers voyaient avec eux.

« Nous avons décidé de percer le mystère de la raison pour laquelle un ver transparent, presque invisible, qui se nourrit en pleine nuit, a évolué pour avoir des yeux énormes. » dit le biologiste marin Michael Bock De l'Université de Lund en Suède. « En tant que tel, le premier objectif était de déterminer si les grands yeux donnaient au ver une bonne vision. »

Leur travail impliquait une enquête détaillée sur l’observation de trois espèces de vers marins nocturnes de la mer Méditerranée : Candida turea, Vanadis Voir. FormoseEt Les naïades peuvent s'entraînerchacun comportant une paire géante de mirettes gonflées.

Les chercheurs ont mené des études optiques, morphologiques et électrophysiologiques des yeux de ces animaux de manière méticuleuse. Les résultats ont montré que la famille des vers polychètes Alciopidae appartient aux trois espèces La capacité de voir des objets petits ou éloignés Et suivez leur mouvement.

Un ensemble de trois yeux de ver. Vanadis Voir. Formose Situé en bas à gauche ; Candida turea En haut à droite ; Et Les naïades peuvent s'entraîner En bas à droite. (Bock et coll., la devise. Biol.2024)

Étant donné que seuls les vertébrés, les arthropodes et les céphalopodes étaient auparavant connus pour avoir une vision des objets, c'est vraiment extraordinaire. La plupart des autres vers polychètes ont Vision de base basse résolutionou Réception de lumière directionnelle Qui détecte uniquement la présence de lumière et la direction d'où elle provient.

READ  L'algorithme d'IA supprime le flou de l'univers

« C'est la première fois qu'une vision aussi avancée et détaillée est démontrée en dehors de ces groupes. » dit le neurobiologiste marin Anders Jarm De l'Université de Copenhague.

« En fait, nos recherches ont montré que le ver a une vision exceptionnelle. Sa vision est comparable à celle des souris ou des rats, bien qu'il s'agisse d'un organisme relativement simple avec un petit cerveau. »

On ne sait toujours pas pourquoi une créature active la nuit au fond de l’océan aurait besoin d’une acuité visuelle aussi fine. Il semble que ce soit effectivement le cas ; Même si le corps du ver est suffisamment transparent pour lui permettre de se cacher, ses yeux doivent rester suffisamment opaques pour absorber la lumière. Cela signifie que les yeux doivent conférer un bénéfice qui compense le risque d'être remarqué par les prédateurs de passage.

Nous ne savons pas avec certitude quel est cet avantage. Mais cherche Réalisé depuis près de 50 ans Présente une idée. En 1977, des scientifiques ont découvert que les yeux de ces vers sont les plus sensibles à la détection des longueurs d'onde ultraviolettes. Cela suggère que la vie marine nocturne a un secret que nous n’avons pas encore découvert.

« Nous avons une théorie selon laquelle les vers eux-mêmes sont bioluminescents et communiquent entre eux via la lumière. Si vous utilisez une lumière bleue ou verte ordinaire comme bioluminescence, vous risquez également d'attirer les prédateurs. Mais si le ver utilise plutôt la lumière ultraviolette, il restera invisible.  » « Pour les animaux autres que ceux de leur propre espèce, notre hypothèse est donc qu'ils ont développé une vision ultraviolette aiguë pour avoir un langage secret d'accouplement. » Garm explique.

READ  La NASA pourrait utiliser le vaisseau SpaceX pour sauver 3 membres d'équipage bloqués sur la Station spatiale internationale

« Il se peut aussi qu’ils recherchent des proies dotées de la bioluminescence UV. Mais quoi qu’il en soit, cela rend les choses vraiment excitantes car la bioluminescence UV n’a jamais été observée chez aucun autre animal. Nous espérons donc pouvoir présenter cela comme la première. Découvrez un exemple.

La recherche a été publiée dans Biologie actuelle.

Continue Reading

science

Les terres englouties au large de l'Australie étaient un point chaud pour les aborigènes lors de la dernière période glaciaire, révèlent 4 000 objets en pierre.

Published

on

Les terres englouties au large de l'Australie étaient un point chaud pour les aborigènes lors de la dernière période glaciaire, révèlent 4 000 objets en pierre.

Une analyse de plus de 4 000 objets en pierre découverts sur une île au nord-ouest de l’Australie donne un aperçu de la vie aborigène il y a des dizaines de milliers d’années.

Il a déclaré que la découverte souligne les « liens de longue date » entre les peuples aborigènes et l'Australie contemporaine. David Zénaanthropologue à la California State University, Sacramento et auteur principal d'une nouvelle étude décrivant l'analyse.

Continue Reading

science

Les réactions chimiques rivalisent avec les trous noirs

Published

on

Les réactions chimiques rivalisent avec les trous noirs

Les scientifiques ont découvert que les particules brouillent les informations quantiques à des vitesses similaires à celles des trous noirs, affectant les réactions chimiques et offrant des informations sur le contrôle des systèmes informatiques quantiques. Crédit : SciTechDaily.com

Des recherches menées par l'Université Rice et l'Université de l'Illinois à Urbana-Champaign ont montré que les particules peuvent brouiller les informations quantiques aussi efficacement que les trous noirs, ce qui a des implications pour la physique et la physique chimique. Statistiques quantitatives.

Si vous deviez lancer un message dans une bouteille à… Le trou noir, toutes les informations qu'il contient, jusqu'au niveau quantique, seraient complètement brouillées. Parce que ce brouillage se produit dans les trous noirs avec la vitesse et la précision permises par la mécanique quantique, ils sont généralement considérés comme les meilleurs brouilleurs d'informations de la nature.

Cependant, de nouvelles recherches menées par Peter Wollens, théoricien de l'Université Rice, et ses collaborateurs de l'Université de l'Illinois à Urbana-Champaign ont montré que les particules peuvent être aussi massives pour mélanger l'information quantique que les trous noirs. En combinant des outils mathématiques issus de la physique des trous noirs et de la physique chimique, ils ont montré que le brouillage de l'information quantique se produit dans les réactions chimiques et peut atteindre presque la même limite mécanique quantique que dans les trous noirs. L'ouvrage est publié en ligne sur Actes de l'Académie nationale des sciences.

Réactions chimiques et brouillage quantitatif

« Cette étude aborde un problème de longue date en physique chimique, qui concerne la rapidité avec laquelle les informations quantiques sont mélangées dans les molécules », a déclaré Wollinis. « Quand les gens pensent à une réaction dans laquelle deux molécules se lient ensemble, ils pensent aux atomes effectuant un seul mouvement où une liaison se forme ou une liaison se rompt.

« Mais du point de vue de la mécanique quantique, même une très petite molécule est un système très complexe. Comme pour les orbites du système solaire, une molécule a un grand nombre de modes de mouvement possibles – ce que nous appelons des états quantiques. Quand une réaction chimique se produit, les informations quantiques sur les états quantiques deviennent. Les réactifs sont brouillés et nous voulons savoir comment les informations de brouillage affectent la vitesse de réaction.

Qinghao Zhang et Suhang Kundu

Qinghao Zhang (à gauche) et Suhang Kundu. Crédit : photo Zhang par Bill Wiegand/Université de l'Illinois Urbana-Champaign ; Photo de Kondo gracieuseté de Sohang Kondo

Pour mieux comprendre comment les informations quantiques sont mélangées dans les réactions chimiques, les scientifiques ont emprunté un outil mathématique couramment utilisé en physique des trous noirs, appelé corrélations hors du temps, ou OTOC.

READ  Les champignons peuvent être imités et utilisés pour remplacer le plastique, nouveau risi

« Les OTOC ont en fait été inventés dans un contexte complètement différent il y a environ 55 ans, lorsqu'ils étaient utilisés pour étudier comment les électrons des supraconducteurs sont affectés par les perturbations causées par les impuretés », a déclaré Wollinis. « C'est un objet très spécialisé utilisé dans la théorie de la supraconductivité. Il a ensuite été utilisé par les physiciens dans les années 1990 lors de l'étude des trous noirs et de la théorie des cordes. « 

Les OTOC mesurent comment la modification d'une partie d'un système quantique à un moment donné affecte les mouvements des autres parties, ce qui donne un aperçu de la rapidité et de l'efficacité avec laquelle les informations se propagent dans la molécule. C'est la contrepartie quantitative des exposants de Lyapunov, qui mesurent l'imprévisibilité des systèmes chaotiques classiques.

« La rapidité avec laquelle l'OTOC augmente au fil du temps vous indique la rapidité avec laquelle les informations sont mélangées dans un système quantique, ce qui signifie combien d'états aléatoires sont accédés », a déclaré Martin Grubel, chimiste à l'Université de l'Illinois à Urbana-Champaign et co-auteur de l'étude. projet de recherche. L'étude, qui fait partie du Centre commun Rice-Illinois pour l'adaptation des défauts en tant qu'avantages, a été financée par la National Science Foundation. « Les chimistes sont très opposés au sujet du brouillage dans les réactions chimiques, car le brouillage est nécessaire pour atteindre la cible de la réaction, mais il pervertit également votre contrôle sur la réaction.

« Comprendre les conditions dans lesquelles les molécules brouillent les informations, et les conditions dans lesquelles il est peu probable qu'elles le fassent, nous donne la possibilité de mieux contrôler les interactions. Connaître les OTOC nous permet essentiellement de fixer des limites au moment où ces informations disparaissent réellement hors de notre contrôle, et à l’inverse, c’est-à-dire quand nous pouvons encore l’exploiter pour obtenir des résultats contrôlés.

Peter Wollinis, Nancy MacRae et Martin Grubel

Peter Wollinis (de gauche à droite), Nancy Macri et Martin Groppelli. Crédit : photo Wolinis par Gustavo Raskoski/Université de Rice ; Photo de McCrary, gracieuseté de Nancy McCrary ; Photo Groppeli par Fred Zwicky/Université de l'Illinois Urbana-Champaign

En mécanique classique, une particule doit avoir suffisamment d’énergie pour surmonter la barrière énergétique pour que la réaction se produise. Cependant, en mécanique quantique, il existe une possibilité que des particules puissent « passer » à travers cette barrière même si elles ne disposent pas de suffisamment d’énergie. Le calcul des OTOC a montré que les réactions chimiques avec une faible énergie d'activation à basse température, où l'effet tunnel domine, peuvent brouiller les informations presque à la limite quantique, comme un trou noir.

READ  La NASA pourrait utiliser le vaisseau SpaceX pour sauver 3 membres d'équipage bloqués sur la Station spatiale internationale

Nancy Macri, également chimiste à l'Université de l'Illinois à Urbana-Champaign, a utilisé les méthodes d'intégration de chemin qu'elle a développées pour étudier ce qui se passe lorsqu'un simple modèle de réaction chimique est intégré dans un système plus vaste, qui pourrait être les vibrations d'une grosse molécule ou d'un solvant. et tend à supprimer les mouvements chaotiques.

« Dans une étude distincte, nous avons constaté que les environnements plus grands ont tendance à rendre les choses plus irrégulières et à supprimer les effets dont nous parlons », a déclaré Macri. « Nous avons donc calculé l'OTOC d'un système de tunnel interagissant avec un vaste environnement, et ce que nous avons constaté, c'est que les bousculades étaient supprimées – un changement de comportement significatif. »

Applications pratiques et recherches futures

L’un des domaines d’application pratique des résultats de la recherche consiste à fixer des limites à la manière dont les systèmes de tunneling peuvent être utilisés pour créer des qubits pour les ordinateurs quantiques. Il faut réduire le mélange d’informations entre les systèmes de tunneling en interaction pour améliorer la fiabilité des ordinateurs quantiques. La recherche pourrait également être pertinente pour les réactions dépendantes de la lumière et la conception de matériaux avancés.

« Il est possible d'étendre ces idées à des processus dans lesquels vous n'effectuerez pas seulement un effet tunnel dans une réaction donnée, mais où vous aurez plusieurs étapes d'effet tunnel, car c'est ce qui implique, par exemple, la conduction électronique dans de nombreux nouveaux matériaux mous,  » Groppeli a déclaré. « Les matériaux quantiques comme les pérovskites sont utilisés pour fabriquer des cellules solaires et des choses comme ça. »

READ  Une vidéo virale de la lune se levant au pôle Nord est générée par ordinateur

Référence : « Quantum Information Scrambling and Chemical Reactions » par Zhenghao Zhang, Sohang Kundu, Nancy Macri, Martin Groppeli et Peter J. Woolness, 1er avril 2024, Actes de l'Académie nationale des sciences.
est ce que je: 10.1073/pnas.2321668121

Wolinis est professeur de sciences à la Dr. Pollard Welsh Foundation à Rice, professeur de chimie, de biochimie, de biologie cellulaire, de physique, d'astronomie, de science des matériaux et de nano-ingénierie et codirecteur du Centre de biophysique théorique, financé par le National Science. Fondation. institution. Co-auteurs Gruebele est titulaire de la chaire James R. Eiszner en chimie. Macri est professeur Edward William et Jane Marr Gutgessel et professeur de chimie et de physique. Qinghao Zhang était étudiant diplômé en physique à l'Université de l'Illinois à Urbana-Champaign et est maintenant étudiant postdoctoral au Pacific Northwest National Laboratory. Sohang Kundu a récemment obtenu son doctorat. Il a obtenu son doctorat en chimie de l'Université de l'Illinois et est actuellement étudiant postdoctoral à Université de Colombie.

La recherche a été soutenue par la National Science Foundation (1548562, 2019745, 1955302) et la chaire Pollard Welch de Rice (C-0016).

Continue Reading

Trending

Copyright © 2023