Connect with us

science

196 lasers aident les scientifiques à recréer la condition

Published

on

Technicien chez NIF

Photo : Un technicien travaille au National Ignition Facility. Les scientifiques ont utilisé un réseau de 196 lasers pour créer des conditions similaires au gaz chaud à l’intérieur d’amas géants de galaxies.
Avis Suite

Crédit : National Ignition Facility

Les galaxies vivent rarement seules. Au lieu de cela, des dizaines à des milliers sont maintenus ensemble par la gravité, formant d’énormes amas des plus gros objets de l’univers.

« Les amas de galaxies sont parmi les choses les plus impressionnantes de l’univers », a déclaré le professeur émérite Don Lamb, astrophysicien à l’Université de Chicago et co-auteur d’un nouvel article publié le 9 mars. des décennies d’obscurité.

Les scientifiques savent depuis longtemps que l’hydrogène gazeux dans les amas de galaxies est trop chaud – environ 10 millions de degrés Kelvin, soit à peu près la même température que le centre du Soleil – et trop chaud pour que des atomes d’hydrogène existent. Au lieu de cela, le gaz est un plasma composé de protons et d’électrons.

Mais le mystère demeure : il n’y a aucune explication directe pour expliquer pourquoi ou comment le gaz reste si chaud. Selon les règles naturelles de la physique, il doit s’être refroidi pendant la durée de vie de l’univers. Mais elle ne l’a pas fait.

Le défi pour quiconque essaie de résoudre ce casse-tête est que vous ne pouvez pas exactement créer ce genre de conditions magnétiques chaudes et fortes dans votre propre arrière-cour.

Cependant, il n’y a maintenant qu’un seul endroit sur Terre où vous pouvez le faire : l’installation laser la plus active au monde. Le National Ignition Facility du Lawrence Livermore National Laboratory est capable de créer de telles conditions extrêmes, mais seulement pendant une fraction de seconde à la taille d’un centime.

Des scientifiques d’UChicago, de l’Université d’Oxford et de l’Université de Rochester ont travaillé ensemble pour utiliser le National Ignition Facility – situé à Livermore, en Californie – pour créer des conditions similaires au gaz chaud dans des amas galactiques géants. « Les expériences menées au NIF sont littéralement hors de ce monde », a déclaré Jena Meinecke, qui était le premier auteur de l’article.

Les scientifiques ont concentré 196 lasers sur une seule petite cible, créant un plasma blanc chaud avec des champs magnétiques intenses présents pendant quelques milliardièmes de seconde.

C’était assez long pour qu’ils déterminent qu’au lieu d’une température uniforme, il y avait des points chauds et froids dans le plasma.

Ceci est cohérent avec l’une des théories qui ont été proposées sur la façon dont la chaleur est piégée à l’intérieur des amas de galaxies. Normalement, la chaleur peut être facilement distribuée lorsque les électrons entrent en collision les uns avec les autres. Mais les champs magnétiques intriqués à l’intérieur du plasma peuvent affecter ces électrons, les faisant tourner dans la direction des champs magnétiques, les empêchant de distribuer et de répartir leur énergie de manière uniforme.

READ  Les scientifiques ont détecté une "tension quantique" entre les molécules d'eau voisines

En fait, ils ont vu dans l’expérience que la livraison de puissance était supprimée plus de 100 fois.

« C’est un résultat très excitant car nous avons pu montrer que ce que les astrophysiciens ont proposé est sur la bonne voie », a déclaré Lamb, professeur d’astronomie et d’astrophysique Robert A. Millikan.

« C’est en effet un résultat étonnant », a ajouté un co-auteur de l’étude à l’Université de Rochester. Professeur Petros Tseverakos, qui a supervisé les simulations informatiques de l’expérience complexe. « Les simulations ont été essentielles pour démêler la physique du plasma magnétisé turbulent, mais le niveau d’inhibition du transfert de chaleur était plus élevé que prévu. »

Les simulations ont été réalisées à l’aide d’un code informatique appelé FLASH Codes, qui a été développé à l’Université de Chicago et est maintenant hébergé à l’Université de Rochester. Centre Flash pour les sciences informatiquesdirigé par Tzeferacos. Le code permet aux scientifiques de simuler leurs expériences avec des lasers de manière très détaillée avant qu’elles ne soient réalisées, afin qu’ils puissent obtenir les résultats qu’ils recherchent.

Ceci est essentiel car les scientifiques n’obtiennent que quelques précieux instantanés dans l’installation – si quelque chose ne va pas, il n’y a pas de rediffusion. Et parce que les conditions de l’expérience ne durent qu’une nanoseconde, les scientifiques doivent s’assurer qu’ils effectuent les mesures dont ils ont besoin exactement au bon moment. Cela signifie que tout doit être soigneusement planifié très tôt.

« C’est un défi quand vous êtes à la toute fin de ce que vous pouvez faire, mais c’est là que se trouvent les limites », a déclaré Lamb.

Cependant, il y a encore plus de questions sur la physique des amas de galaxies. Bien que les points chauds et froids soient des preuves solides de l’influence des champs magnétiques sur le refroidissement des gaz chauds dans les amas de galaxies, d’autres expériences sont nécessaires pour comprendre exactement ce qui se passe. Le groupe planifie sa prochaine série d’essais au NIF plus tard cette année.

Pour l’instant, cependant, ils sont heureux de faire la lumière sur les raisons pour lesquelles le gaz dans les amas de galaxies reste chaud même après des milliards d’années.

Les galaxies vivent rarement seules. Au lieu de cela, des dizaines à des milliers sont maintenus ensemble par la gravité, formant d’énormes amas des plus gros objets de l’univers.

READ  Des scientifiques et des ingénieurs lunaires européens conçoivent l'explorateur de caverne lunaire - la parabole

« Les amas de galaxies sont parmi les choses les plus impressionnantes de l’univers », a déclaré le professeur émérite Don Lamb, astrophysicien à l’Université de Chicago et co-auteur d’un nouvel article publié le 9 mars. des décennies d’obscurité.

Les scientifiques savent depuis longtemps que l’hydrogène gazeux dans les amas de galaxies est trop chaud – environ 10 millions de degrés Kelvin, soit à peu près la même température que le centre du Soleil – et trop chaud pour que des atomes d’hydrogène existent. Au lieu de cela, le gaz est un plasma composé de protons et d’électrons.

Mais le mystère demeure : il n’y a aucune explication directe pour expliquer pourquoi ou comment le gaz reste si chaud. Selon les règles naturelles de la physique, il doit s’être refroidi pendant la durée de vie de l’univers. Mais elle ne l’a pas fait.

Le défi pour quiconque essaie de résoudre ce casse-tête est que vous ne pouvez pas exactement créer ce genre de conditions magnétiques chaudes et fortes dans votre propre arrière-cour.

Cependant, il n’y a maintenant qu’un seul endroit sur Terre où vous pouvez le faire : l’installation laser la plus active au monde. Le National Ignition Facility du Lawrence Livermore National Laboratory est capable de créer de telles conditions extrêmes, mais seulement pendant une fraction de seconde à la taille d’un centime.

Des scientifiques d’UChicago, de l’Université d’Oxford et de l’Université de Rochester ont travaillé ensemble pour utiliser le National Ignition Facility – situé à Livermore, en Californie – pour créer des conditions similaires au gaz chaud dans des amas galactiques géants. « Les expériences menées au NIF sont littéralement hors de ce monde », a déclaré Jena Meinecke, qui était le premier auteur de l’article.

Les scientifiques ont concentré 196 lasers sur une seule petite cible, créant un plasma blanc chaud avec des champs magnétiques intenses présents pendant quelques milliardièmes de seconde.

C’était assez long pour qu’ils déterminent qu’au lieu d’une température uniforme, il y avait des points chauds et froids dans le plasma.

Ceci est cohérent avec l’une des théories qui ont été proposées sur la façon dont la chaleur est piégée à l’intérieur des amas de galaxies. Normalement, la chaleur peut être facilement distribuée lorsque les électrons entrent en collision les uns avec les autres. Mais les champs magnétiques intriqués à l’intérieur du plasma peuvent affecter ces électrons, les faisant tourner dans la direction des champs magnétiques, les empêchant de distribuer et de répartir leur énergie de manière uniforme.

READ  Les astronautes de SpaceX Crew-4 arrivent en Floride avant le lancement du 23 avril vers la Station spatiale internationale (photos)

En fait, ils ont vu dans l’expérience que la livraison de puissance était supprimée plus de 100 fois.

« C’est un résultat très excitant car nous avons pu montrer que ce que les astrophysiciens ont proposé est sur la bonne voie », a déclaré Lamb, professeur d’astronomie et d’astrophysique Robert A. Millikan.

« C’est en effet un résultat étonnant », a ajouté un co-auteur de l’étude à l’Université de Rochester. Professeur Petros Tseverakos, qui a supervisé les simulations informatiques de l’expérience complexe. « Les simulations ont été essentielles pour démêler la physique du plasma magnétisé turbulent, mais le niveau d’inhibition du transfert de chaleur était plus élevé que prévu. »

Les simulations ont été réalisées à l’aide d’un code informatique appelé FLASH Codes, qui a été développé à l’Université de Chicago et est maintenant hébergé à l’Université de Rochester. Centre Flash pour les sciences informatiquesdirigé par Tzeferacos. Le code permet aux scientifiques de simuler leurs expériences avec des lasers de manière très détaillée avant qu’elles ne soient réalisées, afin qu’ils puissent obtenir les résultats qu’ils recherchent.

Ceci est essentiel car les scientifiques n’obtiennent que quelques précieux instantanés dans l’installation – si quelque chose ne va pas, il n’y a pas de rediffusion. Et parce que les conditions de l’expérience ne durent qu’une nanoseconde, les scientifiques doivent s’assurer qu’ils effectuent les mesures dont ils ont besoin exactement au bon moment. Cela signifie que tout doit être soigneusement planifié très tôt.

« C’est un défi quand vous êtes à la toute fin de ce que vous pouvez faire, mais c’est là que se trouvent les limites », a déclaré Lamb.

Cependant, il y a encore plus de questions sur la physique des amas de galaxies. Bien que les points chauds et froids soient des preuves solides de l’influence des champs magnétiques sur le refroidissement des gaz chauds dans les amas de galaxies, d’autres expériences sont nécessaires pour comprendre exactement ce qui se passe. Le groupe planifie sa prochaine série d’essais au NIF plus tard cette année.

Pour l’instant, cependant, ils sont heureux de faire la lumière sur les raisons pour lesquelles le gaz dans les amas de galaxies reste chaud même après des milliards d’années.

« C’est un rappel que l’univers est plein de choses incroyables », a déclaré Lamb.

Il était le chercheur principal de l’expérience Professeur Gianluca Gregory À partir de L’université d’Oxford. Les membres de l’équipe comprenaient également Oxford Professeur Alexander ShikuchinPrinceton Robot Archieet Laboratoire national Lawrence Livermore James Stephen Ross.


Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le catalyseur à base de molybdène-sucre détruit efficacement le dioxyde de carbone

Published

on

Le catalyseur à base de molybdène-sucre détruit efficacement le dioxyde de carbone

Une fois cette opération terminée, l’équipe a pu utiliser le catalyseur pour convertir le dioxyde de carbone en monoxyde de carbone (CO), un élément important pour la production d’une variété de produits chimiques utiles. Lorsque la réaction se produit en présence d’hydrogène, par exemple, le dioxyde de carbone et l’hydrogène se transforment en gaz de synthèse (ou syngas), une matière première précieuse pour produire des carburants pouvant remplacer l’essence.

Fonctionnant à pression ambiante et à haute température (300-600°C), le catalyseur convertit le dioxyde de carbone en dioxyde de carbone avec une sélectivité de 100 %.

Une sélectivité élevée signifie que le catalyseur agit uniquement sur le dioxyde de carbone sans endommager les matériaux environnants. En d’autres termes, l’industrie peut appliquer le catalyseur à de grandes quantités de gaz capturés et cibler sélectivement uniquement le dioxyde de carbone. Le catalyseur est également resté stable dans le temps, c’est-à-dire qu’il est resté actif et ne s’est pas décomposé.

Ce diagramme montre le processus complet de création d’un catalyseur et de son utilisation pour convertir le dioxyde de carbone. (Photo de Milad Khashoui, Université Northwestern).

« En chimie, il n’est pas rare qu’un catalyseur perde sa sélectivité au bout de quelques heures », Omar K. joie, l’étude L’auteur principal a déclaré dans un communiqué aux médias. « Mais après 500 heures dans des conditions difficiles, sa sélectivité n’a pas changé. »

C’est remarquable car le dioxyde de carbone est une molécule stable et tenace.

« La conversion du dioxyde de carbone n’est pas facile », a déclaré Milad Khoshoui, co-auteur principal de l’étude. « Le CO2 est une molécule chimiquement stable, et nous avons dû surmonter cette stabilité, ce qui nécessite beaucoup d’énergie. »

READ  Qu'est-ce qu'une balle Dyson ?

Le développement des matériaux nécessaires au captage du carbone est l’objectif principal du Farha Lab. Son groupe développe des structures organométalliques (MOF), un type de matériau hautement poreux de taille nanométrique qui ressemble à des « éponges de bain sophistiquées et programmables ». Farha explore les MOF pour diverses applications, notamment l’extraction directe du dioxyde de carbone de l’air.

Du point de vue du chercheur, le MOF et le nouveau catalyseur pourraient travailler ensemble pour jouer un rôle dans le captage et la séquestration du carbone.

« À un moment donné, nous pourrions utiliser des MOF pour capturer le dioxyde de carbone, suivis d’un catalyseur pour le convertir en quelque chose de plus utile », a suggéré Farha. « Un système tandem utilisant deux matériaux différents pour deux étapes séquentielles pourrait être la voie à suivre. »

« Cela peut nous aider à répondre à la question : que faisons-nous du dioxyde de carbone capturé ? », a déclaré Khoshoui. « Pour l’instant, il est prévu de l’isoler sous terre. Mais les réservoirs souterrains doivent répondre à de nombreuses exigences pour stocker le CO2 de manière sûre et permanente. Nous voulions concevoir une solution plus universelle, utilisable partout, tout en apportant une valeur économique. »

Continue Reading

science

La bioluminescence a évolué 300 millions d’années plus tôt qu’on ne le pensait

Published

on

La bioluminescence a évolué 300 millions d’années plus tôt qu’on ne le pensait
Corail de bambou brillant (photo : Expédition Bioluminescence 2009NOAA/REL)

par

Une nouvelle étude suggère que la bioluminescence chez les animaux a évolué il y a au moins 540 millions d’années, soit environ 300 millions d’années plus tôt que ce qui avait été enregistré précédemment.

L’étude menée par des scientifiques de Musée national d’histoire naturelle Smithsonian Il a été suggéré que ce trait a d’abord évolué dans une sous-classe d’anthozoaires – la classe qui contient des coraux et des anémones – connue sous le nom d’octocorallia, qui comprend tous les coraux mous, les coraux bleus et les pennatules.

La bioluminescence – dans laquelle les organismes produisent de la lumière par des réactions chimiques – a évolué au moins indépendamment 94 fois dans la natureIl est utilisé dans un large éventail de comportements, allant de la communication et de la parade nuptiale au camouflage et à la chasse. On le trouve dans un large éventail d’espèces marines et terrestres, depuis les bactéries, champignons et insectes jusqu’aux dinoflagellés, poissons et méduses.

Jusqu’à présent, le plus ancien exemple connu de bioluminescence chez les animaux marins se situerait il y a environ 267 millions d’années chez les palourdes, petits crustacés répandus – dont environ 13 000 espèces – dans les eaux du monde. Mais où et quand ce phénomène est apparu reste entouré de mystère.

Tu pourrais aussi aimer
Des polypes bioluminescents illuminent les branches d'une espèce de corail bambou
Un type de bambou corail bioluminescent (image: Expédition Bioluminescence 2009NOAA/REL)

« Nous voulions connaître le moment de l’origine de la bioluminescence », a déclaré Danielle DeLeo, auteur principal de l’étude. « Les coraux originaux sont l’un des groupes d’animaux les plus anciens de la planète connus pour leur bioluminescence. » « Alors, la question était : quand ont-ils développé cette capacité ?

READ  La NASA teste une imprimante 3D qui utilise la poussière lunaire comme matériau de construction pour de futures missions

L’équipe a commencé le processus en utilisant un arbre évolutif détaillé pour les huit coraux, composé de données génétiques de 185 espèces vivantes différentes, précédemment publié par Andrea Quattrini et Catherine McFadden, deux des co-auteurs de la nouvelle étude. En comparant les huit fossiles de coraux de structure similaire provenant d’époques connues avec des spécimens plus récents, l’équipe a pu déterminer le moment où les espèces ont divergé et se sont divisées en branches distinctes du registre évolutif.

Les scientifiques ont utilisé cette comparaison pour effectuer une « reconstruction de l’état ancestral », un processus par lequel les caractéristiques connues des espèces vivantes peuvent être extrapolées dans le temps pour retrouver leurs ancêtres communs.

« Si nous savons que ces huit espèces de coraux vivant aujourd’hui sont bioluminescentes, nous pouvons utiliser les statistiques pour déduire si leurs ancêtres étaient très susceptibles d’être bioluminescents ou non », a déclaré Quattrini. « Plus il y a d’espèces vivantes ayant un trait commun, plus il est probable qu’en remontant le temps, ces ancêtres auraient probablement eu ce trait également. »

Un type de corail Iridogorgia présenté dans son état naturel et la lumière émanant de ses polypes
Type de EriduGéorgie Le corail montre la lumière émise par les polypes (Image : Noé Bioluminescence et vision des fonds marins 2015)

La méthodologie établie a révélé que l’ancêtre commun le plus récent des huit coraux était lui-même bioluminescent, plaçant l’origine du phénomène il y a environ 542 millions d’années au début du Cambrien, période de l’histoire de la Terre où la vie multicellulaire commençait déjà à s’implanter. .

Après avoir déterminé la période pendant laquelle la bioluminescence a probablement évolué, la question suivante que se posent les scientifiques est la suivante : Pourquoi Évolué. À quoi servait-il chez les polypes coloniaux aveugles ? Pourquoi a-t-il évolué chez d’autres espèces non apparentées ? Pourrait-il avoir évolué encore plus tôt, chez les ancêtres des huit coraux ?

READ  Les astronautes de SpaceX Crew-4 arrivent en Floride avant le lancement du 23 avril vers la Station spatiale internationale (photos)

540 millions d’années, c’est un long chemin à parcourir. Les yeux et d’autres organes sensibles à la lumière ont déjà évolué et sont présents dans les premiers organismes du Cambrien tels que les trilobites, ce qui, selon les scientifiques, rend plausible l’idée que la bioluminescence soit utilisée comme forme de communication entre les anthozoaires et d’autres créatures, peut-être comme moyen de défense. mécanisme.

Un type de plume marine qui émet de la lumière à partir de la base de chaque polype
parapluie s. Une plume marine émet de la lumière depuis la base de chaque polype (Image : NOAA Bioluminescence et vision des fonds marins 2015)

L’équipe souligne également des études antérieures suggérant que la réaction chimique à l’origine de la bioluminescence pourrait avoir évolué comme un mécanisme permettant d’éliminer l’excès d’oxygène – qui peut être toxique pour la vie marine en quantité suffisante – et que la lumière résultante a été récupérée comme moyen de communication. . À un stade ultérieur du développement des organismes.

Quelles que soient ses origines, le fait que la bioluminescence existe depuis si longtemps suggère qu’elle a un objectif évolutif réussi. DeLeo a déclaré qu’elle et certains des co-auteurs de l’étude travaillaient actuellement sur une « comptabilité complète » du nombre d’environ 3 000 espèces de coraux bioluminescents qui ont perdu cette caractéristique.

Ils espèrent que le test permettra de mieux comprendre comment et quand la bioluminescence a évolué pour la première fois, ajoutant qu’il est possible que de futures études déterminent qu’elle est en réalité plus ancienne.


L’article « Evolution of bioluminescence in Anthozoa with a focus on Octocoralia » de Daniel M. DeLeo, Manabu Bishō-Uehara, Stephen H. D. Haddock, Catherine S. Macfadyen et Andrea M. Quattrini est publié sous licence en libre accès dans Actes de la Royal Society B.

Continue Reading

science

Cinq avancées majeures des cinq dernières années

Published

on

Cinq avancées majeures des cinq dernières années

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

source fiable

Écrit par un ou plusieurs chercheurs

Relecture


Crédit : domaine public Unsplash/CC0

× Fermer


Crédit : domaine public Unsplash/CC0

Il y a encore beaucoup de choses que nous ne comprenons pas sur l’origine de la vie sur Terre.

La définition même de la vie est source de débat parmi les scientifiques, mais la plupart des chercheurs s’accordent sur les composants fondamentaux d’une cellule vivante. L’eau, l’énergie et certains éléments de base sont les conditions de base pour l’émergence des cellules. Cependant, les détails exacts de la manière dont cela se produit restent un mystère.

Des recherches récentes se sont concentrées sur la tentative de recréer en laboratoire les réactions chimiques qui composent la vie telle que nous la connaissons, dans des conditions plausibles pour la Terre primitive (il y a environ 4 milliards d’années). Les expériences sont devenues de plus en plus complexes, grâce aux progrès technologiques et à une meilleure compréhension des conditions primitives de la Terre.

Cependant, loin de rassembler les chercheurs et de trancher le débat, l’émergence des travaux expérimentaux a donné naissance à de nombreuses théories contradictoires. Certains scientifiques pensent que la vie est apparue dans les profondeurs marines Sources hydrothermalesOù les conditions fournissaient l’énergie nécessaire. D’autres le pensent Sources chaudes sur terre Cela aurait fourni un meilleur environnement car il est plus susceptible de contenir des molécules organiques que des météorites. Ce ne sont que deux possibilités à l’étude.

Voici cinq des découvertes les plus marquantes de ces cinq dernières années.

Réactions dans les premières cellules

Quelle est la source d’énergie qui a déclenché les réactions chimiques lorsque la vie est apparue ? C’est l’énigme qu’un Équipe de recherche en Allemagne Il cherchait à découvrir. L’équipe a étudié la faisabilité de 402 réactions connues pour former certains des composants essentiels de la vie, par ex. Nucléotides (élément constitutif de l’ADN et de l’ARN). Ils l’ont fait en utilisant certains des objets les plus courants que l’on pouvait trouver sur la Terre primitive.

On pense également que ces réactions, trouvées dans les cellules modernes, constituent le principal processus métabolique de LUCA. Le dernier ancêtre commun universelOrganisme unicellulaire qui ressemble à une bactérie.

Pour chaque réaction, ils ont calculé les changements d’énergie libre, ce qui détermine si la réaction peut se dérouler sans autres sources d’énergie externes. Ce qui est étonnant, c’est que bon nombre de ces réactions étaient indépendantes des influences extérieures. Comme l’adénosine triphosphateune source universelle d’énergie dans les cellules vivantes.

La synthèse des éléments de base de la vie n’a pas besoin de renforcement énergétique extérieur : elle s’auto-entretient.

Verre volcanique

La vie dépend de molécules pour stocker et transmettre des informations. Les scientifiques pensent que des brins d’ARN étaient présents Précurseurs de l’ADN En remplissant ce rôle, car sa structure est plus simple.

L’apparition de l’acide ribonucléique (ARN) sur notre planète a longtemps dérouté les chercheurs. Cependant, certains progrès ont été réalisés récemment. En 2022, une équipe de collaborateurs aux Etats-Unis Des brins d’ARN stables ont été générés dans le laboratoire. Pour ce faire, ils ont fait passer des nucléotides à travers du verre volcanique. Les fils de discussion qu’ils créaient étaient suffisamment longs pour stocker et transmettre des informations.

Le verre volcanique était présent sur la Terre primitive, grâce aux fréquents impacts de météorites combinés à une forte activité volcanique. Les nucléotides utilisés dans l’étude sont également… On pense qu’il était présent À cette époque de l’histoire de la Terre. Les roches volcaniques peuvent avoir facilité les réactions chimiques qui assemblent les nucléotides en chaînes d’ARN.



Sources hydrothermales

La fixation du carbone est un processus dans lequel le dioxyde de carbone est libéré2 Gagne des électrons. Il est nécessaire de construire les molécules qui constituent la base de la vie.

Un donneur d’électrons est nécessaire pour conduire cette réaction. Au début de la Terre, H2 Il peut s’agir d’un donateur électronique. En 2020, un Afficher une équipe de collaborateurs Cette réaction pourrait se produire spontanément et être alimentée par des conditions environnementales similaires aux sources hydrothermales alcalines des profondeurs marines des premiers océans. Ils l’ont fait en utilisant Technologie microfluidiquedes appareils qui manipulent de petits volumes de liquides pour réaliser des expériences en simulant des ouvertures alcalines.

Ce chemin est Étonnamment similaire Combien de cellules bactériennes et archéennes modernes (organismes unicellulaires sans noyau) fonctionnent.

Cycle de Krebs

Dans les cellules modernes, la fixation du carbone fait suite à une série de réactions chimiques qui assemblent ou décomposent des molécules dans des réseaux métaboliques complexes pilotés par des enzymes.

Mais les scientifiques débattent encore de la manière dont les réactions métaboliques se produisaient avant l’apparition et l’évolution de ces enzymes. En 2019, une équipe de l’Université de Strasbourg en France a réalisé des travaux percée. Ils ont montré que le fer ferrique, un type de fer abondant dans la croûte terrestre et dans les premiers océans, pouvait propulser neuf marches sur 11. Cycle de Krebs. Le cycle de Krebs est une voie biologique présente dans de nombreuses cellules vivantes.

Ici, le fer ferrique a servi de donneur d’électrons pour stabiliser le carbone, déclenchant une série de réactions. Les réactions ont produit les cinq précurseurs métaboliques universels, cinq molécules essentielles traversant différentes voies métaboliques dans tous les organismes vivants.

Les éléments constitutifs des anciennes membranes cellulaires

Comprendre la composition des éléments constitutifs de la vie et leurs réactions complexes constitue une étape majeure dans la compréhension de l’émergence de la vie.

Cependant, qu’elles se soient produites dans des sources chaudes terrestres ou dans les profondeurs marines, ces réactions n’auraient pas été très efficaces sans la membrane cellulaire. Les membranes cellulaires jouent un rôle actif dans la biochimie de la cellule primitive et dans sa relation avec l’environnement.

Les membranes cellulaires modernes sont principalement composées de composés appelés phospholipides, qui contiennent une tête hydrophile et deux queues hydrophobes. Ils sont organisés en bicouches, les têtes hydrophiles pointant vers l’extérieur et les queues hydrophobes pointant vers l’intérieur.

Des recherches ont montré que certains composants des phospholipides, tels que les acides gras qui forment les queues, peuvent s’auto-assembler dans ces membranes bicouches en Un ensemble de conditions environnementales. Mais ces acides gras étaient-ils présents au début de la Terre ? Des recherches récentes menées par l’Université de Newcastle au Royaume-Uni apportent une réponse intéressante. Des chercheurs Recréez-le La formation spontanée de ces molécules résulte de la combinaison de fluides riches en H₂, probablement présents dans d’anciennes sources hydrothermales alcalines, avec du dioxyde de carbone.2-Des eaux riches ressemblant aux premiers océans.

Cette réalisation est cohérente avec l’hypothèse selon laquelle des membranes d’acides gras stables peuvent apparaître dans les sources hydrothermales alcalines, se développant potentiellement en cellules vivantes. Les auteurs ont émis l’hypothèse que des réactions chimiques similaires pourraient se produire dans les océans souterrains des lunes glacées, qui contiendraient des sources hydrothermales similaires à celles de la Terre.

Chacune de ces découvertes ajoute une nouvelle pièce au puzzle de l’origine de la vie. Quelle que soit la validité de ces théories, des théories contradictoires alimentent la recherche de réponses.

Comme Charles Darwin livres« Les faits faux sont très préjudiciables au progrès de la science parce qu’ils persistent souvent longtemps : mais les fausses opinions, si elles sont appuyées par quelques preuves, ne font pas grand mal, car tous prennent un plaisir utile à se prouver faux ; le chemin vers l’erreur est fermé. « Et le chemin vers la vérité est souvent en même temps ouvert. »

READ  Qu'est-ce qu'une balle Dyson ?
Continue Reading

Trending

Copyright © 2023