Connect with us

science

Révéler l'élément mystérieux manquant dans les nuages ​​de Vénus

Published

on

Révéler l'élément mystérieux manquant dans les nuages ​​de Vénus

Révéler l'élément mystérieux manquant dans les nuages ​​de Vénus

Par livre du personnel

Cambridge Royaume-Uni (SPX) 8 janvier 2024






De quoi sont faits les nuages ​​de Vénus ? Les scientifiques savent qu’il s’agit principalement de gouttelettes d’acide sulfurique, avec un peu d’eau, de chlore et de fer. Leurs concentrations varient avec l'altitude dans l'atmosphère épaisse et hostile de Vénus. Mais jusqu’à présent, ils n’ont pas été en mesure d’identifier le composant manquant qui pourrait expliquer les taches et les lignes nuageuses, visibles uniquement dans la gamme ultraviolette.

Dans une nouvelle étude publiée dans la revue Science Advances, des chercheurs de l’Université de Cambridge ont synthétisé des minéraux sulfates contenant du fer qui sont stables dans les conditions chimiques difficiles des nuages ​​roses. L'analyse spectroscopique a révélé qu'une combinaison de deux minéraux, la rumbuclase et le sulfate ferrique acide, pourrait expliquer la mystérieuse fonction d'absorption des UV sur notre planète voisine.

« Les seules données disponibles sur la formation des nuages ​​ont été collectées par des sondes et ont révélé d'étranges propriétés des nuages ​​que nous n'avons pas encore pu expliquer pleinement », a déclaré Paul Remer du laboratoire Cavendish et co-auteur de l'étude. « En particulier, lorsqu'ils sont examinés sous lumière ultraviolette, les nuages ​​​​roses ont montré un modèle spécifique d'absorption UV. Quels éléments, composés ou minéraux sont responsables de cette observation ? »

Formulée sur la base de la chimie de l'atmosphère de Vénus, l'équipe a synthétisé plusieurs minéraux sulfates contenant du fer dans le laboratoire d'hydrogéochimie du Département des sciences de la Terre. En suspendant les matériaux fabriqués avec différentes concentrations d'acide sulfurique et en observant les changements chimiques et minéralogiques, l'équipe a réduit les minéraux candidats au rhomboclase et au sulfate ferrique acide, dont les caractéristiques spectrales ont été examinées sous des sources lumineuses spécialement conçues pour imiter le spectre de la lumière. Éruptions solaires (FlareLab de Paul Rimmer et Samantha Thompson au Laboratoire Cavendish).

READ  Une éruption intense sur de jeunes étoiles semblables au Soleil suggère un environnement brutal pour le développement exoplanétaire

Le laboratoire de photochimie de Harvard a collaboré à la recherche en fournissant des mesures des modèles d'absorption UV de l'acide ferrique dans des conditions acides extrêmes, dans le but d'imiter les nuages ​​​​floraux les plus extrêmes. Les scientifiques font partie d’un consortium Origins nouvellement créé, qui encourage de tels projets collaboratifs.

Le co-auteur Clancy Zijian Jiang, du Département des sciences de la Terre à Cambridge, a déclaré : « Les modèles et le niveau d'absorption observés par la combinaison de ces deux phases minérales sont cohérents avec les taches UV sombres observées dans les nuages ​​roses. » « Ces expériences ciblées ont révélé le réseau chimique complexe au sein de l'atmosphère et mis en lumière le cycle des éléments à la surface de Vénus. »

« Vénus est notre plus proche voisine, mais cela reste un mystère », a déclaré Reimer. « Nous aurons l'occasion d'en apprendre davantage sur cette planète dans les années à venir grâce aux futures missions de la NASA et de l'ESA prévues pour explorer son atmosphère, ses nuages ​​et sa surface. Cette étude pose les bases de ces futures explorations. »



Rapport de recherche:La chimie du fer et du soufre pourrait expliquer l'absorption du rayonnement ultraviolet dans les nuages ​​de Vénus


Liens connexes

Laboratoire Tosca

Actualités Venus Express et Venus Science

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Des vortex électroniques ont été découverts dans le graphène

Published

on

Des vortex électroniques ont été découverts dans le graphène

Des chercheurs de l’ETH Zurich ont montré pour la première fois comment les électrons forment des tourbillons dans un matériau à température ambiante. Leur expérience a utilisé un microscope à détection quantique à extrêmement haute résolution.

Lorsqu’un conducteur électrique ordinaire – tel qu’un fil métallique – est connecté à une batterie, les électrons du conducteur sont accélérés par le champ électrique généré par la batterie. Lorsqu’ils se déplacent, les électrons entrent fréquemment en collision avec des atomes d’impuretés ou des lacunes dans le réseau cristallin du fil, convertissant une partie de leur énergie cinétique en vibrations du réseau. L’énergie perdue au cours de ce processus se transforme en chaleur qui peut être ressentie, par exemple, en touchant une ampoule à incandescence.

Alors que les collisions avec les impuretés du réseau se produisent fréquemment, les collisions entre électrons sont beaucoup plus rares. Cependant, la situation change lorsque le graphène, une seule couche d’atomes de carbone disposés dans un réseau en nid d’abeilles, est utilisé à la place d’un fil de fer ou de cuivre ordinaire. Dans le graphène, les collisions d’impuretés sont rares et les collisions entre électrons jouent le rôle principal. Dans ce cas, les électrons se comportent comme un fluide visqueux. Par conséquent, des phénomènes d’écoulement bien connus, tels que des tourbillons, devraient se produire dans la couche de graphène.

Microscope à détection quantique haute sensibilité

Les vortex se sont formés en petits disques circulaires, que Degen et ses collègues ont attachés pendant le processus de fabrication à un ruban de graphène conducteur d’à peine un micromètre de large. Les disques avaient différents diamètres allant de 1,2 à 3 µm. Les calculs théoriques indiquent que des vortex électroniques devraient se former dans les disques plus petits, mais pas dans les disques plus grands.

Pour rendre les vortex visibles, les chercheurs ont mesuré de petits champs magnétiques produits par les électrons circulant dans le graphène. À cette fin, ils ont utilisé un capteur de champ magnétique quantique constitué d’un centre dit de lacune d’azote (NV) intégré dans la pointe d’une aiguille en diamant. Étant un défaut atomique, le centre NV se comporte comme un objet quantique dont les niveaux d’énergie dépendent d’un champ magnétique externe. À l’aide de faisceaux laser et d’impulsions micro-ondes, les états quantiques du centre peuvent être préparés de manière à être le plus sensible possible aux champs magnétiques. En lisant les états quantiques avec un laser, les chercheurs ont pu déterminer très précisément l’intensité de ces champs.

Sens d’écoulement inversé

Dans leurs mesures, les chercheurs ont remarqué un signe distinctif des tourbillons attendus dans les disques plus petits : une inversion de la direction du flux. Alors que dans le transport normal (diffus) des électrons, les électrons dans la bande et le disque circulent dans la même direction, dans le cas d’un vortex, le sens du flux à l’intérieur du disque est inversé. Comme le prédisaient les calculs, aucun tourbillon n’a pu être observé dans les disques les plus grands.

« Grâce à notre capteur très sensible et à notre haute résolution spatiale, nous n’avons même pas eu besoin de refroidir le graphène et avons pu réaliser des expériences à température ambiante », explique Palm. De plus, lui et ses collègues ont découvert non seulement des vortex électroniques, mais également des vortex formés par des porteurs de trous. En appliquant une tension sous le graphène, ils ont modifié le nombre d’électrons libres de telle manière que le flux de courant n’était plus transporté par les électrons, mais par les électrons manquants, également appelés trous. Ce n’est qu’au point de neutralité de charge, où se trouve une petite concentration équilibrée d’électrons et de trous, que les vortex ont complètement disparu.

« À l’heure actuelle, la détection des vortex électroniques constitue une recherche fondamentale, et de nombreuses questions restent encore en suspens », explique Palm. Par exemple, les chercheurs doivent encore savoir comment les collisions d’électrons avec les limites du graphène affectent le modèle d’écoulement et quels effets se produisent dans les structures plus petites. La nouvelle méthode de détection utilisée par les chercheurs de l’ETH permet également d’examiner de plus près de nombreux autres effets exotiques de transfert d’électrons dans des structures microscopiques – des phénomènes qui se produisent à des échelles de longueur allant de plusieurs dizaines de nanomètres à quelques micromètres.

READ  Des relevés aériens de la Grande Barrière de Corail commandés après que des vols ont confirmé le blanchissement massif des coraux | la grande Barrière de corail

Continue Reading

science

La recherche sur la structure des centromères donne de nouvelles informations sur les mécanismes des erreurs de ségrégation chromosomique

Published

on

Des chercheurs du groupe COPS, en collaboration avec des chercheurs de l’Université d’Édimbourg, ont fait une nouvelle découverte surprenante dans la structure du centromère, la structure impliquée pour garantir que les chromosomes se séparent correctement lorsqu’une cellule se divise. Des erreurs dans la ségrégation des chromosomes peuvent entraîner la mort cellulaire et le développement d’un cancer. Les chercheurs ont découvert que le centromère se compose de deux sous-domaines. Cette découverte fondamentale a des implications importantes pour le processus de ségrégation des chromosomes et fournit de nouveaux mécanismes sous-jacents aux divisions défectueuses des cellules cancéreuses. La recherche a été publiée dans cellule Le 13 maioui 2024.

Notre corps est constitué de milliards de cellules, dont la plupart ont une durée de vie limitée et doivent donc se reproduire pour remplacer les vieilles cellules. Ce processus de reproduction est appelé division cellulaire ou mitose. Lors de la mitose, la cellule mère duplique ses chromosomes afin de transmettre le matériel génétique aux cellules filles. Les paires de chromosomes identiques qui en résultent, les chromatides sœurs, sont maintenues ensemble par une structure appelée centromère. Les chromatides sœurs doivent ensuite être divisées à parts égales entre les deux cellules filles pour garantir que chaque cellule fille est une copie exacte de la cellule mère. Si des erreurs se produisent lors de la ségrégation, une cellule fille aura trop de chromosomes, tandis que l’autre en aura trop peu. Cela peut conduire à la mort cellulaire ou au développement d’un cancer.

Le rôle du centromère

Le centromère est une partie du chromosome qui joue un rôle essentiel dans la ségrégation des chromosomes pendant la mitose. Le processus de division des chromatides sœurs sur les cellules est dirigé par l’interaction entre les centromères et les structures appelées microtubules du fuseau. Ces microtubules fusiformes sont responsables du désassemblage des chromatides et ainsi de la séparation des chromatides sœurs. « Si l’attachement du centromère aux microtubules du fuseau ne se produit pas correctement, cela conduit à des erreurs de ségrégation chromosomique fréquemment observées dans le cancer », explique Carlos Sacristan Lopez, premier auteur de cette étude. Comprendre la structure des centromères peut contribuer à mieux comprendre la fonction des centromères et son rôle dans la mauvaise ségrégation des chromosomes.

READ  Les bactéries du désert aident à développer une peinture qui capte le carbone

grève

Pour étudier la structure du centromère, les chercheurs ont utilisé une combinaison de techniques d’imagerie et de séquençage. L’imagerie par microscopie à super-résolution a été réalisée à l’Institut Hubrecht, tandis que le groupe de Bill Earnshaw effectuait le séquençage. Cette collaboration a conduit à une nouvelle découverte surprenante dans la structure du centromère. On pensait auparavant qu’il s’agissait d’une structure compacte attachée à des microtubules multi-fuseaux, mais il s’est avéré que le centromère était constitué de deux sous-domaines. « C’était une découverte très surprenante, car les sous-domaines lient les microtubules indépendamment les uns des autres », explique Carlos. Cependant, pour former les bonnes associations, ils doivent rester étroitement liés. Cependant, dans les cellules cancéreuses, on observe souvent que les sous-domaines ne sont pas associés, conduisant à de fausses associations et à des erreurs de ségrégation chromosomique.

Cette découverte passionnante et très fondamentale contribue à notre compréhension de l’origine des erreurs de ségrégation chromosomique qui apparaissent fréquemment dans le cancer.

Continue Reading

science

Comme une imprimante 3D, un ver marin forme des poils morceau par morceau : étude

Published

on

Comme une imprimante 3D, un ver marin forme des poils morceau par morceau : étude

Une nouvelle étude a mis en lumière la façon dont certains vers marins forment des poils, qui sont des protubérances ressemblant à des poils de chaque côté.

Une équipe de chercheurs, dirigée par le biologiste moléculaire Florian Raebel des laboratoires Max Perutz de l’université de Vienne, a utilisé des techniques d’imagerie avancées pour étudier de près Platinieris DumerelliCe qui est souvent considéré comme un fossile vivant.

Ces annélides possèdent des poils inhabituels qui leur permettent de naviguer dans leur environnement aquatique. Mais comment se forment ces structures complexes ? Il s’avère que ces espèces développent leurs poils morceau par morceau, à la manière du processus d’impression 3D.

Processus naturel complexe

Les chitoplastes, cellules spécialisées des vers, contrôlent ce processus biologique. Ces cellules produisent de la chitine, une substance fibreuse et résistante qui joue un rôle clé dans la formation des cheveux.

« Le processus commence par la pointe des poils, suivi par la section centrale et enfin par la base des poils. Les parties terminales sont poussées de plus en plus loin du corps. Dans ce processus de développement, des modules fonctionnels importants sont créés un par un, pièce par pièce, ce qui est similaire à l’impression 3D.

Cette biogenèse est un processus complexe. Ces cellules chitoplastes sont composées de longues structures superficielles appelées microvillosités. Les microvillosités chitoplastes contiennent une enzyme spéciale nécessaire à la formation de chitine.

Tout comme les buses d’une imprimante 3D, ces microvillosités sculptent avec précision les filaments, couche par couche.

« Notre analyse suggère que la chitine est produite par des microvillosités individuelles de la cellule chitoplaste », a déclaré Raible.

READ  Attraper des protéines d'actine en travaillant

Le changement précis du nombre et de la forme de ces microvillosités au fil du temps était donc essentiel à la formation des structures géométriques des filaments individuels, telles que les dents individuelles à l’extrémité des filaments, qui étaient précises jusqu’à l’échelle submicrométrique. Il ajouta.

Différentes parties des poils de l’annélide marin Platynereis dumerilii. Reconstruction 3D à partir de plus de 1000 micrographies électroniques. Lame (à gauche), lame articulée (au milieu), manche (à droite). Ilija Belevich, Université d’Helsinki

Cette compréhension peut conduire à la création de produits médicaux

Fait intéressant, en quelques jours, ces structures passent de la formation initiale à la pleine maturité, prêtes à assister le ver dans sa vie aquatique. De plus, les poils peuvent avoir différentes formes et longueurs.

À mesure que le ver mûrit, la forme de ses poils peut changer radicalement. Par exemple, ils peuvent devenir plus courts ou plus longs, plus pointus ou plats, selon les besoins du ver et les conditions environnementales.

Les chercheurs ont révélé les secrets de la formation des cheveux grâce à des techniques d’imagerie avancées.

Ils ont créé des modèles 3D détaillés à l’aide de la microscopie électronique à balayage en série du visage, fournissant ainsi des informations sans précédent sur ce processus biologique.

Il est intéressant de noter que l’équipe souligne que la compréhension de ce processus biologique pourrait conduire au développement de nouveaux produits médicaux et de matériaux naturellement biodégradables à l’avenir.

Selon communiqué de presseLa chitine molle trouvée dans le calmar est déjà utilisée « comme matière première pour la production de pansements bien tolérés ».

Ce travail de recherche a été réalisé en coopération avec l’Université d’Helsinki, l’Université de technologie de Vienne et l’Université Masaryk de Brno.

READ  Le vent solaire frappe la Terre cette semaine: ScienceAlert

Les résultats ont été publiés dans la revue Communication naturelle.

les nouvelles

Planificateur quotidien

Restez au courant de l’actualité de l’ingénierie, de la technologie, de l’aérospatiale et de la science avec The Blueprint.

À propos de l’éditeur

Mrigakshi Dixit Mrijakshi est un journaliste scientifique qui aime écrire sur l’exploration spatiale, la biologie et les innovations technologiques. Son expérience professionnelle inclut à la fois les médias audiovisuels et numériques, ce qui lui a permis d’apprendre une variété de formats de narration. Ses travaux ont été publiés dans des publications bien connues, notamment Nature India, Supercluster et Astronomy. Si vous avez des offres en tête, n’hésitez pas à leur envoyer un email.

Continue Reading

Trending

Copyright © 2023