Connect with us

science

Découvrir l'origine de circuits radio rares dans l'univers

Published

on

Découvrir l'origine de circuits radio rares dans l'univers

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture

Simulation des vents provoqués par des explosions stellaires à trois périodes différentes, à partir d'il y a 181 millions d'années. La moitié supérieure de chaque image montre la température du gaz, tandis que la moitié inférieure montre la vitesse radiale. Crédit : Cassandra Luchas / Institut scientifique du télescope spatial

× Fermer

Simulation des vents provoqués par des explosions stellaires à trois périodes différentes, à partir d'il y a 181 millions d'années. La moitié supérieure de chaque image montre la température du gaz, tandis que la moitié inférieure montre la vitesse radiale. Crédit : Cassandra Luchas / Institut scientifique du télescope spatial

Ce n'est pas tous les jours que les astronomes disent : « Qu'est-ce que c'est ? Après tout, la plupart des phénomènes astronomiques observés sont connus : étoiles, planètes, trous noirs, galaxies. Mais en 2019, le nouveau télescope ASKAP (Australian Square Kilometer Array) a capturé quelque chose que personne n'avait jamais vu auparavant : des cercles d'ondes radio si grands qu'ils contiennent des galaxies entières en leur centre.

Alors que la communauté astrophysique essayait de déterminer ce qu’étaient ces cercles, elle voulait également savoir « pourquoi » ces cercles existaient. Aujourd'hui, une équipe dirigée par Alison Coyle, professeur d'astronomie et d'astrophysique à l'Université de Californie à San Diego, pense avoir trouvé la réponse : les cercles sont des coquilles formées par des vents galactiques, peut-être à partir d'étoiles massives explosives connues sous le nom de supernovas. Leurs travaux sont publiés dans nature.

Cowell et ses collaborateurs ont étudié les galaxies massives en « étoile » capables de propulser ces vents extrêmement rapides. Les galaxies Starburst ont un taux de formation d’étoiles exceptionnellement élevé. Lorsque les étoiles meurent et explosent, elles expulsent du gaz de l’étoile et de ses environs dans l’espace interstellaire. Si suffisamment d’étoiles explosent à proximité les unes des autres en même temps, la force de ces explosions peut pousser le gaz hors de la galaxie elle-même et dans le vent, qui peut se déplacer à des vitesses allant jusqu’à 2 000 kilomètres par seconde.

« Ces galaxies sont vraiment intéressantes », a déclaré Cowell, qui est également président du Département d'astronomie et d'astrophysique. « Ils se produisent lorsque deux grandes galaxies entrent en collision. La fusion pousse tout le gaz dans une très petite zone, provoquant une intense explosion de formation d'étoiles. Les étoiles massives brûlent rapidement et lorsqu'elles meurent, elles expulsent leur gaz dans les vents. »

Source énorme, rare et inconnue

Les progrès technologiques ont permis à ASKAP de scanner de grandes parties du ciel dans des limites très faibles, rendant les circuits radio individuels (ORC) détectables pour la première fois en 2019. Les ORC étaient énormes : des centaines de kiloparsecs de diamètre, ce qui équivaut à Un kiloparsec équivaut à 3 260 années-lumière. (Pour référence, la Voie Lactée mesure environ 30 kiloparsecs.)

Une simulation informatique d'un vent galactique à réaction tiré à une vitesse initiale de 450 kilomètres par seconde et un débit massique de 200 masses solaires par an, qui souffle du gaz hors de la galaxie pendant 200 millions d'années dans le milieu galactique environnant. Le panneau de gauche montre la température du gaz et le panneau de droite montre la densité du gaz. Cette simulation fournit une explication possible de l’origine des circuits radio individuels. Crédit : Cassandra Luchas / Institut scientifique du télescope spatial

Plusieurs théories ont été proposées pour expliquer l'origine des ORC, notamment les fusions de nébuleuses planétaires et de trous noirs, mais les données radio à elles seules n'ont pas permis de faire la distinction entre les théories.

Cowell et ses collaborateurs étaient intrigués et pensaient qu'il était possible que les anneaux radio soient une évolution des stades ultérieurs des galaxies en étoile qu'ils étudiaient. Ils ont commencé des recherches sur ORC 4, le premier ORC découvert et observable depuis l'hémisphère nord.

Jusqu’alors, les ORC n’étaient observés que par leurs émissions radio, sans aucune donnée optique. L'équipe de Cowell a utilisé un spectrographe de champ intégré à l'observatoire WM Keck de Maunakea, à Hawaï, pour examiner ORC 4, qui a révélé une énorme quantité de gaz comprimé, chauffé et intensément lumineux, bien plus que ce que l'on voit dans la galaxie moyenne.

Avec plus de questions que de réponses, l'équipe se met au travail de détective. À l’aide de données d’imagerie optique et infrarouge, ils ont déterminé que les étoiles de la galaxie ORC 4 ont environ 6 milliards d’années. « Il y a eu une explosion de la formation d'étoiles dans cette galaxie, mais elle s'est terminée il y a environ un milliard d'années », a déclaré Cowell.

Cassandra Luchas, chercheuse postdoctorale au Harvard-Smithsonian Center for Astrophysics, spécialisée dans l'aspect théorique des vents galactiques et co-auteur de l'article, a effectué un ensemble de simulations informatiques numériques pour reproduire la taille et les propriétés de la radio à large bande. Un anneau contenant une grande quantité de gaz froid a été projeté dans la galaxie centrale.

Leurs simulations ont montré que les vents galactiques soufflent pendant 200 millions d’années avant de s’arrêter. Lorsque les vents se sont arrêtés, le choc vers l'avant a continué à pousser le gaz à haute température hors de la galaxie et a créé un anneau radio, tandis que le choc inverse a envoyé du gaz froid retomber sur la galaxie. La simulation a duré plus de 750 millions d’années, dans l’âge stellaire estimé à 1 milliard d’années pour ORC 4.

« Pour que cela fonctionne, vous avez besoin d'un débit massique élevé, ce qui signifie qu'il éjecte beaucoup de matière très rapidement. Et le gaz environnant à l'extérieur de la galaxie doit être de faible densité, sinon le choc s'arrêtera. Ce sont les deux clés. facteurs », a déclaré Cowell.

« Il s'avère que les galaxies que nous avons étudiées ont des débits massiques élevés. Ils sont rares, mais ils existent. Je pense vraiment que cela indique des ORC résultant d'une sorte de vent galactique. »

Non seulement les vents fluides peuvent aider les astronomes à comprendre les ORC, mais les ORC peuvent également aider les astronomes à comprendre les vents fluides.

« Les ORC nous permettent de voir les vents grâce aux données radio et à la spectroscopie », a déclaré Cowell.

« Cela peut nous aider à déterminer la fréquence de ces vents galactiques intenses et fluides et quel est le cycle de vie du vent. Cela peut également nous aider à en apprendre davantage sur l'évolution des galaxies : toutes les galaxies massives passent-elles par une phase ORC ? Les galaxies spirales tournent-elles en elliptiques alors qu'ils ne le font pas. Formation d'étoiles plus longue ? Je pense que nous pouvons apprendre beaucoup de choses sur les ORC et apprendre des ORC. « 

Plus d'information:
Le fichier Allison, un gaz ionisé s'étendant sur plus de 40 kiloparsecs dans une galaxie hôte dotée d'un circuit radio exotique, nature (2024). est ce que je: 10.1038/s41586-023-06752-8. www.nature.com/articles/s41586-023-06752-8

Informations sur les magazines :
nature


READ  La NASA a besoin de votre aide pour trouver des mondes extraterrestres
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La première imagerie au monde d’atomes de césium radioactifs dans des échantillons environnementaux

Published

on

La première imagerie au monde d’atomes de césium radioactifs dans des échantillons environnementaux

L’analyse pionnière, réalisée par une équipe de chercheurs au Japon, en Finlande, en Amérique et en France, analysant les matériaux rejetés par les réacteurs FDNPP endommagés, révèle des informations importantes sur les défis environnementaux et de gestion des déchets radioactifs auxquels le Japon est confronté. L’étude est intitulée « « Détection d’atomes de césium radioactifs invisibles : présence d’un contaminant dans des microparticules riches en césium (CsMP) provenant de la centrale nucléaire de Fukushima Daiichi. » Il vient d’être publié dans Magazine des matières dangereuses.

Fusions de Fukushima Daiichi : un casse-tête technique et environnemental en cours

En 2011, après le tremblement de terre et le tsunami du Grand Tohoku, trois réacteurs nucléaires de la FDNPP ont connu une fusion en raison d’une perte d’alimentation de secours et de refroidissement. Depuis lors, de nombreux efforts de recherche se sont concentrés sur la compréhension des propriétés des débris de combustible (le mélange de combustible nucléaire fondu et de matériaux de structure) trouvés à l’intérieur des réacteurs endommagés. Ces débris doivent être soigneusement retirés et éliminés.

Vous voulez plus d’actualités ?

participation à Réseaux technologiquesUne newsletter quotidienne, fournissant chaque jour les dernières nouvelles scientifiques directement dans votre boîte de réception.

Abonnez-vous gratuitement

Cependant, de nombreuses incertitudes demeurent quant à l’état physique et chimique des débris de combustible, ce qui complique grandement les efforts de récupération.

Les tentatives pour comprendre la chimie du césium radioactif conduisent à des résultats qui sont les premiers du genre au monde

Une grande quantité d’éléments radioactifs a été libérée par les réacteurs endommagés de Fukushima Daiichi sous forme de particules. Les particules, appelées microparticules riches en Cs (CsMP), sont peu solubles, petites (moins de 5 µm) et ont une composition vitreuse.

READ  Les transistors à réseau extensible peuvent à la fois augmenter et affaiblir la mémoire de l'appareil

Professeur Satoshi Utsunomiya de l’Université de Kyushu, au Japon, a dirigé la présente étude. Il a expliqué que les CsMP « se formaient au fond des réacteurs endommagés lors des fusions, lorsque le combustible nucléaire en fusion heurtait le béton ».

Après la formation, de nombreux CsMP ont été perdus du confinement du réacteur dans le milieu environnant.

Comment l’image a-t-elle été créée ?

La caractérisation détaillée des CsMP a révélé des indices importants sur les mécanismes et l’étendue des effondrements. Cependant, malgré l’abondance du Cs dans les particules fines, l’imagerie directe au niveau atomique du Cs radioactif dans les particules s’est avérée impossible.

Professeur Loi Gareth« Cela signifie que nous manquons d’informations complètes sur la forme chimique du Cs dans les particules et les débris de carburant », a expliqué l’un des participants à l’étude de l’Université d’Helsinki.

« Bien que le Cs soit présent dans les particules à des concentrations raisonnablement élevées, il est souvent trop faible pour une imagerie réussie au niveau atomique à l’aide de techniques avancées de microscopie électronique », a poursuivi Utsunomiya. « Lorsque le Cs a été trouvé à une concentration suffisamment élevée, nous avons trouvé le faisceau d’électrons. détruit l’échantillon, rendant les données résultantes inutiles. Cependant, lors de travaux antérieurs de l’équipe utilisant un microscope électronique à balayage à angle sombre avancé à haute résolution (HR-HAADF-STEM), ils ont trouvé des inclusions d’un minéral appelé pollucite (zéolite). . Dans la nature, la pollution est généralement riche en aluminium.

La contamination trouvée dans les CsMP était clairement différente de celle trouvée dans la nature, indiquant qu’elle s’est formée dans des réacteurs. « Parce que nous savions que la plupart des Cs dans les CsMP provenaient de la fission, nous avons pensé que l’analyse de la contamination pourrait conduire aux toutes premières images directes d’atomes de Cs radioactifs », a poursuivi Utsunomiya.

READ  La NASA a besoin de votre aide pour trouver des mondes extraterrestres

La zéolite peut devenir amorphe lorsqu’elle est exposée à une irradiation par un faisceau d’électrons, mais ces dommages sont liés à la composition de la zéolite, et l’équipe a découvert que certaines impuretés contaminants étaient stables dans le faisceau d’électrons.

Après avoir appris cela et sur la base de la modélisation, l’équipe s’est lancée dans une analyse minutieuse de Shahada Utsunomiya, une étudiante diplômée. Kanako MiyazakiEnfin, l’équipe a photographié les atomes radioactifs de Cs.

Utsunomiya a expliqué :

C’était très intéressant de voir le magnifique motif d’atomes de Cs dans la structure contaminée, environ la moitié des atomes de l’image correspondant à du Cs radioactif.

Il a poursuivi : « C’est la première fois que les humains imagent directement des atomes de Cs radioactifs dans un échantillon environnemental. La découverte de concentrations suffisamment élevées de Cs suffisamment radioactifs dans des échantillons environnementaux pour permettre une imagerie directe est inhabituelle et pose des problèmes de sécurité. S’il était passionnant de créer une image scientifique pour la première fois au monde, il est en même temps triste que cela n’ait été possible que grâce à un accident nucléaire.

Plus qu’une simple avancée dans le domaine de la photographie

Utsunomiya a souligné que les résultats de l’étude vont au-delà de la simple imagerie des atomes de Cs radioactifs : « Nos travaux mettent en évidence la composition des contaminants et l’hétérogénéité potentielle de la distribution du Cs au sein des réacteurs FDNPP et de l’environnement. »

Lu a en outre souligné l’importance : « Nous démontrons sans équivoque l’apparition de nouveaux C associés aux matériaux rejetés par les réacteurs FDNPP. La découverte de C contenant un contaminant dans les CsMP signifie probablement qu’ils restent également dans les réacteurs concernés. pris en compte dans les stratégies de démantèlement des réacteurs et de gestion des déchets.

READ  Un poisson vieux de 365 millions d'années présentant une sous-occlusion sévère montre une diversité de vertébrés

Professeur agrégé émérite Bernd Grambo De Subatech, Université IMT Atlantique Nantes, il a ajouté : « Nous devons maintenant commencer également à examiner le comportement environnemental de la pollucite au Cs et ses impacts potentiels. Elle est susceptible de se comporter différemment des autres formes de retombées du Cs documentées à ce jour. mai L’impact sur la santé humaine doit être pris en compte. La réaction chimique du contaminant dans l’environnement et dans les fluides corporels est certainement différente des autres formes d’éléments radioactifs déposés.

Enfin, concernant l’importance de l’étude, le professeur Dr. a déclaré : Rod Ewing L’étudiant de l’Université de Stanford a souligné le besoin urgent de poursuivre les recherches pour éclairer les stratégies d’élimination des débris et de dépollution de l’environnement : « Une fois de plus, nous constatons que les efforts analytiques minutieux des scientifiques internationaux peuvent résoudre les mystères des accidents nucléaires, contribuant ainsi aux efforts de rétablissement à long terme. »

référence: Miyazaki K, Takehara M, Minomo K et al. Détection d’atomes de césium radioactifs « invisibles » : présence d’un contaminant dans des microparticules riches en césium (CsMP) de la centrale nucléaire de Fukushima Daiichi. J Hazard Mater. 2024;470:134104. est ce que je: 10.1016/j.jhazmat.2024.134104

Cet article a été republié ci-dessous Matiéres. Remarque : Le matériel peut avoir été modifié en termes de longueur et de contenu. Pour plus d’informations, veuillez contacter la source susmentionnée. Vous pouvez accéder à notre politique de communiqués de presse ici.

Continue Reading

science

Étude : Les anciens humains fabriquaient des armes mortelles en bois il y a 300 000 ans

Published

on

Étude : Les anciens humains fabriquaient des armes mortelles en bois il y a 300 000 ans

De nouvelles techniques d’imagerie puissantes révèlent que les humains fabriquaient déjà des armes de chasse complexes à partir du bois il y a 300 000 ans, bouleversant ainsi le stéréotype de l’âge de pierre.

Les archéologues ont déjà soupçonné Les humains utilisent des outils en bois depuis au moins aussi longtemps que des outils en pierre, mais en raison de la nature plus fragile du bois, la plupart des preuves ont pourri.

Aujourd’hui, en utilisant la microscopie 3D et les scanners micro-CT pour examiner 187 objets en bois de Schöningen en Allemagne, l’archéologue Dirk Lederer de l’Office national du patrimoine culturel de Basse-Saxe et ses collègues ont confirmé ces soupçons.

« Le bois était une matière première cruciale pour l’évolution humaine, mais il n’a survécu qu’à l’âge de pierre à Schöningen ère paléolithique La période est d’une qualité si merveilleuse. Il explique Thomas Terberger, archéologue de l’Université de Göttingen.

Cette cache d’objets en bois est la plus grande connue pléistocène (il y a 2,58 à 11 700 ans) Il y avait au moins 10 lances, 7 bâtons de jet et 35 outils ménagers. Ils sont tous sculptés dans des bois réputés à la fois souples et durs, notamment l’épicéa, le pin et le cèdre.

Les outils montraient des preuves évidentes d’une technique de fendage qui était auparavant connue uniquement pour être utilisée par les humains modernes, ainsi que des signes de sculpture, de grattage et d’abrasion.

« La façon dont les instruments en bois étaient fabriqués de manière si experte a été une révélation pour nous. » Il crie Annemieke Milks, archéologue paléolithique de l’Université de Reading.

READ  Ingénierie des usines pour la résilience climatique

Travailler le bois jusqu’à un nouveau niveau de sophistication est un processus lent et en plusieurs étapes qui demande beaucoup de patience et de prévoyance. De plus, l’ère des outils coïncide avec la montée en puissance des Néandertaliens en Europe, dépassant les autres espèces humaines primitives.

Techniques de travail du bois utilisées pour les boiseries rondes (en haut) et les boiseries fendues (en bas). (Leader et coll., Avec des gens2024)

Le site de Schöningen contient également des preuves de jusqu’à 25 animaux abattus, pour la plupart des chevaux.

« Il s’avère que c’est un préHomo sapiens « J’ai fabriqué des outils et des armes pour chasser le gros gibier », a déclaré Terberger. Dire Franz Leeds V. Le New York Times. « Non seulement ils communiquaient ensemble pour abattre leurs proies, mais ils étaient suffisamment sophistiqués pour organiser le dépeçage et le rôtissage. »

Les chercheurs affirment que ces puissantes capacités de chasse sont probablement beaucoup plus anciennes que les objets en bois trouvés à Schöningen. Ces compétences auraient permis aux premiers humains d’avoir accès à des sources alimentaires de haute qualité pendant des générations, offrant ainsi la capacité nécessaire à cette augmentation du développement cérébral et des compétences cognitives associées.

« Dans la même veine, [hunting] « Cela aurait assuré une population durable même dans les régions d’Europe les moins adaptées au Pléistocène et aurait contribué à l’expansion de l’aire de répartition humaine dans le monde entier », ont déclaré Leder et son équipe. Écrire dans leur article.

Étonnamment, les chercheurs ont également trouvé des preuves de recyclage. Les outils cassés ou émoussés ont été retravaillés à de nouvelles fins.

« L’étude fournit des informations uniques sur les techniques de menuiserie du Pléistocène », déclarent les chercheurs. Nous concluons.

READ  D'où la terre tire-t-elle son eau ? Une nouvelle théorie dit qu'il a été aspiré depuis l'espace

« Les armes de chasse en bois de Schöningen incarnent l’interaction entre la complexité technologique, le comportement humain et l’évolution humaine. »

Leur étude a été publiée dans Avec des gens.

Continue Reading

science

Une nouvelle méthode d’appariement des fonctions d’onde aide à résoudre les problèmes quantiques à plusieurs corps

Published

on

Une nouvelle méthode d’appariement des fonctions d’onde aide à résoudre les problèmes quantiques à plusieurs corps

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Correspondant à la fonction d’onde et à la gamme Tjon. crédit: nature (2024). est ce que je: 10.1038/s41586-024-07422-z

× Fermer


Correspondant à la fonction d’onde et à la gamme Tjon. crédit: nature (2024). est ce que je: 10.1038/s41586-024-07422-z

Les systèmes en interaction forte jouent un rôle important en physique quantique et en chimie quantique. Les méthodes stochastiques telles que la simulation de Monte Carlo constituent un moyen éprouvé pour étudier de tels systèmes. Cependant, ces méthodes atteignent leurs limites lorsque se produisent des oscillations de signal.

Ce problème a maintenant été résolu par une équipe internationale de chercheurs d’Allemagne, de Turquie, des États-Unis, de Chine, de Corée du Sud et de France en utilisant la nouvelle méthode d’appariement des fonctions d’onde. Par exemple, les masses et les rayons de tous les noyaux jusqu’au groupe numéro 50 ont été calculés à l’aide de cette méthode. Les résultats sont désormais en accord avec les mesures des chercheurs un rapport Dans le magazine nature.

Toute matière sur Terre est constituée de minuscules particules appelées atomes. Chaque atome contient des particules plus petites : des protons, des neutrons et des électrons. Chacune de ces particules suit les règles de la mécanique quantique. La mécanique quantique constitue la base de la théorie quantique à N corps, qui décrit des systèmes contenant de nombreuses particules, tels que les noyaux atomiques.

Une classe de méthodes utilisées par les physiciens nucléaires pour étudier les noyaux atomiques est l’approche fondée sur des principes. Il décrit des systèmes complexes en commençant par une description de leurs composants élémentaires et de leurs interactions. Dans le cas de la physique nucléaire, les composants élémentaires sont les protons et les neutrons. Certaines des questions clés auxquelles les calculs élémentaires peuvent contribuer à répondre concernent les énergies de liaison et les propriétés des noyaux atomiques et la relation entre la structure nucléaire et les interactions fondamentales entre protons et neutrons.

Cependant, ces méthodes primitives ont des difficultés à effectuer des calculs fiables pour des systèmes aux interactions complexes. L’une de ces méthodes est la simulation quantique de Monte Carlo. Ici, les quantités sont calculées à l’aide de processus stochastiques ou stochastiques.

Bien que les simulations quantiques de Monte Carlo puissent être efficaces et puissantes, elles souffrent d’une faiblesse majeure : le problème des signes. Cela se produit dans les opérations avec des poids positifs et négatifs qui s’annulent. Cette annulation conduit à des prédictions finales inexactes.

La nouvelle approche, connue sous le nom de correspondance de fonctions d’onde, vise à aider à résoudre ces problèmes de calcul pour les méthodes élémentaires.

« Ce problème est résolu par la nouvelle méthode d’appariement des fonctions d’onde en mappant le problème complexe à une première approximation d’un système modèle simple qui ne présente pas de telles oscillations de signal, puis en abordant les différences dans la théorie des perturbations », explique le professeur Ulf-Gee. Meissner est membre de l’Institut Helmholtz de physique des rayonnements et nucléaires de l’Université de Bonn, ainsi que de l’Institut de physique nucléaire et du Centre de simulation et d’analyse avancées du Forschungszentrum Jülich.

« Par exemple, les masses et les rayons de tous les noyaux jusqu’au groupe numéro 50 ont été calculés et les résultats concordent avec les mesures », explique Meissner, qui est également membre des domaines de recherche interdisciplinaires Modélisation et Matériaux à Harvard. Université de Bonn.

« Dans la théorie quantique à N corps, nous rencontrons souvent une situation dans laquelle nous pouvons effectuer des calculs en utilisant une simple interaction approximative, mais les interactions de haute précision du monde réel provoquent de graves problèmes de calcul », explique Dean Lee, professeur de physique à l’Université Rare. Centre de recherche. Istope Beams et le Département de physique et d’astronomie (FRIB) de la Michigan State University et directeur du Département des sciences nucléaires théoriques.

La correspondance des fonctions d’onde résout ce problème en supprimant la partie à courte distance de l’interaction de haute précision et en la remplaçant par la partie à courte distance d’une interaction facilement calculable. Cette transformation est effectuée de manière à préserver toutes les propriétés importantes de l’interaction originale du monde réel.

Étant donné que les nouvelles fonctions d’onde ressemblent à celles de l’interaction facilement calculable, les chercheurs peuvent désormais effectuer des calculs en utilisant l’interaction facilement calculable et appliquer une procédure standard pour traiter les petites corrections – appelée théorie des perturbations.

L’équipe de recherche a appliqué cette nouvelle méthode aux simulations quantiques de Monte Carlo de noyaux légers, de noyaux de masse moyenne, de matière neutronique et de matière nucléaire. Grâce à des calculs minutieux à partir de zéro, les résultats correspondent étroitement aux données réelles sur les propriétés nucléaires telles que la taille, la structure et l’énergie de liaison. Des calculs qui étaient auparavant impossibles en raison du problème de signe peuvent désormais être effectués grâce à l’appariement de fonctions d’onde.

Alors que l’équipe de recherche s’est concentrée exclusivement sur les simulations quantiques de Monte Carlo, l’appariement des fonctions d’onde devrait être utile pour de nombreuses approches fondées sur des principes différents. « Cette méthode peut être utilisée à la fois en informatique classique et quantique, par exemple, pour mieux prédire les propriétés des matériaux dits topologiques, qui sont importants pour l’informatique quantique », explique Meissner.

Le premier auteur est le professeur Serdar Al-Hatisari, qui a travaillé pendant deux ans en tant que membre de la bourse ERC Advanced EXOTIC du professeur Meissner. Selon Meissner, une grande partie du travail a été réalisée à cette époque. Une partie du temps de calcul des supercalculateurs du Forschungszentrum Jülich a été assurée par l’Institut IAS-4, dirigé par Meissner.

Plus d’information:
Sardar Hattisari et al., Correspondance de fonctions d’onde pour résoudre des problèmes quantiques à plusieurs corps, nature (2024). est ce que je: 10.1038/s41586-024-07422-z

Informations sur les magazines :
nature


READ  La NASA a besoin de votre aide pour trouver des mondes extraterrestres
Continue Reading

Trending

Copyright © 2023