Connect with us

science

La stabilité du génome souffre si le moteur de réplication de l’ADN est mal inactif

Published

on

La stabilité du génome souffre si le moteur de réplication de l’ADN est mal inactif

Si les moteurs de réplication de l’ADN restent constamment à la vitesse supérieure, ils finissent par caler, voire même mal fonctionner. Heureusement, ces moteurs, composés de complexes protéiques, possèdent ce que l’on pourrait appeler des modes inactifs, ou mécanismes de stabilité des protéines. L’un de ces mécanismes – l’arrêt ou l’arrêt de la réplication du « brin principal » de l’ADN – était déjà en action, pour ainsi dire. Ses parties sont connues. Mais qu’en est-il du mécanisme de stabilisation du protéasome qui sert à stopper ou à stopper la réplication du « brin en retard » de l’ADN ?

En fait, le mécanisme des touffes en retard venait juste d'être examiné. L'examen, mené par des scientifiques de l'Université de Pennsylvanie et de l'Université de Leeds, a non seulement produit une liste de pièces, mais a également fourni des conseils d'entretien. Plus précisément, cela suggère que des modifications du mécanisme défectueux pourraient aider à traiter les troubles neurologiques et développementaux.

Les détails de l'inspection sont apparus dans le magazine cellule», dans un article intitulé «Le complexe ATPase SPATA5-SPATA5L1 dirige l'ubiquitination des protéines pour garantir l'intégrité du génomeL'article décrit comment les scientifiques ont utilisé la microscopie électronique cryogénique, les analyses de mutagenèse basées sur CRISPR et d'autres techniques avancées pour identifier un complexe protéique jouant un rôle central dans l'arrêt de la réplication des brins en retard.

Cette machinerie composée de quatre protéines, appelée 55LCC, se lie à l'ADN et à son complexe de transcription associé. Alimenté par deux ATPases, 55LCC semble ouvrir le complexe de transcription étroitement replié, lui permettant d'être clivé par des enzymes de coupure de protéines et éliminé.

READ  L'étude démontre pour la première fois la construction de couches de plomb monoatomiques d'une manière spécialement développée

« Une carence en 55LCC a entraîné une protéotoxicité indépendante de l'ubiquitine, un stress de réplication et une grave instabilité chromosomique », ont écrit les auteurs. « 55LCC a montré une activité ATPase qui a été spécifiquement améliorée par la réplication de l'ADN de la fourche de réplication et a été couplée au clivage dépendant de la cystéine protéase des substrats répliqués en réponse aux dommages de la fourche de réplication. Ces résultats identifient la stabilité protéasomique médiée par 55LCC comme étant essentielle à la progression de la fourche de réplication et stabilité du génome et constituent la base de la justification des variantes pathogènes observées dans les troubles neurodéveloppementaux humains associés.

La réplication de l'ADN est réalisée par plusieurs complexes protéiques dotés de fonctions hautement spécialisées, notamment le déroulement de l'ADN et la transcription des brins d'ADN déroulés. Le processus est similaire à une chaîne de montage en usine, où des boules constituées d'énormes chaînes de données sont séparées, permettant de couper et de copier des pièces spécifiques.

« Nous avons découvert ce qui semble être un mécanisme de contrôle de qualité critique dans les cellules », a déclaré le co-auteur principal Roger Greenberg, MD, PhD, professeur de biologie du cancer, directeur du Penn Center for Genome Integrity et directeur des sciences fondamentales. Au Pacer Center pour BRCA à Penn Medicine. « Des milliards de cellules se divisent chaque jour dans notre corps, ce qui nécessite une réplication précise de nos génomes. Nos travaux décrivent un nouveau mécanisme qui régule la stabilité des protéines dans la réplication de l'ADN. Nous en savons désormais davantage sur une étape importante de ce processus biologique complexe. »

READ  Quelle persévérance accomplie en 240 jours sur Mars

Les scientifiques ont découvert que la désactivation ou l’arrêt de la fonction du 55LCC est essentiel à la progression fluide de la réplication de l’ADN. Lorsque 55LCC est absent, la réplication est susceptible d'être perturbée et les cellules affectées cessent de se diviser. « En fin de compte, nous constatons des changements spectaculaires dans la stabilité du génome de ces cellules », a noté Greenberg. « Leurs chromosomes ne se séparent pas correctement lors de la division cellulaire. »

Les scientifiques soupçonnent que le 55LCC pourrait être impliqué dans la régulation non seulement du processus de réplication de l'ADN associé à la division cellulaire, mais également lorsque des lésions dommageables de l'ADN empêchent la réplication.

On sait que les mutations héréditaires des enzymes qui contribuent à la formation du 55LCC sont associées à des syndromes infantiles comprenant la perte auditive, les déficiences cognitives et motrices et l'épilepsie. Dans leurs expériences, les scientifiques ont montré que ces mutations pathogènes ont tendance à réduire la stabilité structurelle du 55LCC ou à affecter ses interactions avec d’autres protéines.

« Nous espérons que ce travail représente le début d'une compréhension plus profonde de ces syndromes neurodéveloppementaux graves », a déclaré Greenberg. « En fin de compte, les implications de cette découverte pourraient être beaucoup plus larges. Cela pourrait conduire à des moyens d'atténuer les problèmes cliniques associés aux syndromes causés par le dysfonctionnement du 55LCC, notamment l'épilepsie, la perte auditive, le retard mental et l'insuffisance médullaire. « 

Le 55LCC pourrait également s’avérer être un outil plus général pour le recyclage des protéines, un autre processus important pour la santé cellulaire. Greenberg et son équipe continuent d'étudier le fonctionnement et la régulation du 55LCC, notamment en comprenant le signal précis qui indique au 55LCC de devenir actif et de commencer à déployer le complexe de réplication de l'ADN.

READ  Des scientifiques révèlent comment des galaxies massives se sont formées au début de l'univers_French.news.cn

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La recherche sur la structure des centromères donne de nouvelles informations sur les mécanismes des erreurs de ségrégation chromosomique

Published

on

Des chercheurs du groupe COPS, en collaboration avec des chercheurs de l’Université d’Édimbourg, ont fait une nouvelle découverte surprenante dans la structure du centromère, la structure impliquée pour garantir que les chromosomes se séparent correctement lorsqu’une cellule se divise. Des erreurs dans la ségrégation des chromosomes peuvent entraîner la mort cellulaire et le développement d’un cancer. Les chercheurs ont découvert que le centromère se compose de deux sous-domaines. Cette découverte fondamentale a des implications importantes pour le processus de ségrégation des chromosomes et fournit de nouveaux mécanismes sous-jacents aux divisions défectueuses des cellules cancéreuses. La recherche a été publiée dans cellule Le 13 maioui 2024.

Notre corps est constitué de milliards de cellules, dont la plupart ont une durée de vie limitée et doivent donc se reproduire pour remplacer les vieilles cellules. Ce processus de reproduction est appelé division cellulaire ou mitose. Lors de la mitose, la cellule mère duplique ses chromosomes afin de transmettre le matériel génétique aux cellules filles. Les paires de chromosomes identiques qui en résultent, les chromatides sœurs, sont maintenues ensemble par une structure appelée centromère. Les chromatides sœurs doivent ensuite être divisées à parts égales entre les deux cellules filles pour garantir que chaque cellule fille est une copie exacte de la cellule mère. Si des erreurs se produisent lors de la ségrégation, une cellule fille aura trop de chromosomes, tandis que l’autre en aura trop peu. Cela peut conduire à la mort cellulaire ou au développement d’un cancer.

Le rôle du centromère

Le centromère est une partie du chromosome qui joue un rôle essentiel dans la ségrégation des chromosomes pendant la mitose. Le processus de division des chromatides sœurs sur les cellules est dirigé par l’interaction entre les centromères et les structures appelées microtubules du fuseau. Ces microtubules fusiformes sont responsables du désassemblage des chromatides et ainsi de la séparation des chromatides sœurs. « Si l’attachement du centromère aux microtubules du fuseau ne se produit pas correctement, cela conduit à des erreurs de ségrégation chromosomique fréquemment observées dans le cancer », explique Carlos Sacristan Lopez, premier auteur de cette étude. Comprendre la structure des centromères peut contribuer à mieux comprendre la fonction des centromères et son rôle dans la mauvaise ségrégation des chromosomes.

READ  Pourquoi Mars s'est-il asséché ? Le mystère s'approfondit alors qu'une nouvelle étude indique des réponses inhabituelles

grève

Pour étudier la structure du centromère, les chercheurs ont utilisé une combinaison de techniques d’imagerie et de séquençage. L’imagerie par microscopie à super-résolution a été réalisée à l’Institut Hubrecht, tandis que le groupe de Bill Earnshaw effectuait le séquençage. Cette collaboration a conduit à une nouvelle découverte surprenante dans la structure du centromère. On pensait auparavant qu’il s’agissait d’une structure compacte attachée à des microtubules multi-fuseaux, mais il s’est avéré que le centromère était constitué de deux sous-domaines. « C’était une découverte très surprenante, car les sous-domaines lient les microtubules indépendamment les uns des autres », explique Carlos. Cependant, pour former les bonnes associations, ils doivent rester étroitement liés. Cependant, dans les cellules cancéreuses, on observe souvent que les sous-domaines ne sont pas associés, conduisant à de fausses associations et à des erreurs de ségrégation chromosomique.

Cette découverte passionnante et très fondamentale contribue à notre compréhension de l’origine des erreurs de ségrégation chromosomique qui apparaissent fréquemment dans le cancer.

Continue Reading

science

Comme une imprimante 3D, un ver marin forme des poils morceau par morceau : étude

Published

on

Comme une imprimante 3D, un ver marin forme des poils morceau par morceau : étude

Une nouvelle étude a mis en lumière la façon dont certains vers marins forment des poils, qui sont des protubérances ressemblant à des poils de chaque côté.

Une équipe de chercheurs, dirigée par le biologiste moléculaire Florian Raebel des laboratoires Max Perutz de l’université de Vienne, a utilisé des techniques d’imagerie avancées pour étudier de près Platinieris DumerelliCe qui est souvent considéré comme un fossile vivant.

Ces annélides possèdent des poils inhabituels qui leur permettent de naviguer dans leur environnement aquatique. Mais comment se forment ces structures complexes ? Il s’avère que ces espèces développent leurs poils morceau par morceau, à la manière du processus d’impression 3D.

Processus naturel complexe

Les chitoplastes, cellules spécialisées des vers, contrôlent ce processus biologique. Ces cellules produisent de la chitine, une substance fibreuse et résistante qui joue un rôle clé dans la formation des cheveux.

« Le processus commence par la pointe des poils, suivi par la section centrale et enfin par la base des poils. Les parties terminales sont poussées de plus en plus loin du corps. Dans ce processus de développement, des modules fonctionnels importants sont créés un par un, pièce par pièce, ce qui est similaire à l’impression 3D.

Cette biogenèse est un processus complexe. Ces cellules chitoplastes sont composées de longues structures superficielles appelées microvillosités. Les microvillosités chitoplastes contiennent une enzyme spéciale nécessaire à la formation de chitine.

Tout comme les buses d’une imprimante 3D, ces microvillosités sculptent avec précision les filaments, couche par couche.

« Notre analyse suggère que la chitine est produite par des microvillosités individuelles de la cellule chitoplaste », a déclaré Raible.

READ  L'étude démontre pour la première fois la construction de couches de plomb monoatomiques d'une manière spécialement développée

Le changement précis du nombre et de la forme de ces microvillosités au fil du temps était donc essentiel à la formation des structures géométriques des filaments individuels, telles que les dents individuelles à l’extrémité des filaments, qui étaient précises jusqu’à l’échelle submicrométrique. Il ajouta.

Différentes parties des poils de l’annélide marin Platynereis dumerilii. Reconstruction 3D à partir de plus de 1000 micrographies électroniques. Lame (à gauche), lame articulée (au milieu), manche (à droite). Ilija Belevich, Université d’Helsinki

Cette compréhension peut conduire à la création de produits médicaux

Fait intéressant, en quelques jours, ces structures passent de la formation initiale à la pleine maturité, prêtes à assister le ver dans sa vie aquatique. De plus, les poils peuvent avoir différentes formes et longueurs.

À mesure que le ver mûrit, la forme de ses poils peut changer radicalement. Par exemple, ils peuvent devenir plus courts ou plus longs, plus pointus ou plats, selon les besoins du ver et les conditions environnementales.

Les chercheurs ont révélé les secrets de la formation des cheveux grâce à des techniques d’imagerie avancées.

Ils ont créé des modèles 3D détaillés à l’aide de la microscopie électronique à balayage en série du visage, fournissant ainsi des informations sans précédent sur ce processus biologique.

Il est intéressant de noter que l’équipe souligne que la compréhension de ce processus biologique pourrait conduire au développement de nouveaux produits médicaux et de matériaux naturellement biodégradables à l’avenir.

Selon communiqué de presseLa chitine molle trouvée dans le calmar est déjà utilisée « comme matière première pour la production de pansements bien tolérés ».

Ce travail de recherche a été réalisé en coopération avec l’Université d’Helsinki, l’Université de technologie de Vienne et l’Université Masaryk de Brno.

READ  Les vagues de chaleur seront plus fréquentes en raison du changement climatique

Les résultats ont été publiés dans la revue Communication naturelle.

les nouvelles

Planificateur quotidien

Restez au courant de l’actualité de l’ingénierie, de la technologie, de l’aérospatiale et de la science avec The Blueprint.

À propos de l’éditeur

Mrigakshi Dixit Mrijakshi est un journaliste scientifique qui aime écrire sur l’exploration spatiale, la biologie et les innovations technologiques. Son expérience professionnelle inclut à la fois les médias audiovisuels et numériques, ce qui lui a permis d’apprendre une variété de formats de narration. Ses travaux ont été publiés dans des publications bien connues, notamment Nature India, Supercluster et Astronomy. Si vous avez des offres en tête, n’hésitez pas à leur envoyer un email.

Continue Reading

science

Les chercheurs peuvent désormais mesurer précisément l’émergence et l’amortissement du champ plasmonique

Published

on

Les chercheurs peuvent désormais mesurer précisément l’émergence et l’amortissement du champ plasmonique

Une équipe de recherche internationale dirigée par l’Université de Hambourg, DESY et l’Université de Stanford, a développé une nouvelle approche pour caractériser le champ électrique d’échantillons plasmoniques aléatoires, tels que les nanoparticules d’or. Les matériaux plasmoniques présentent un intérêt particulier en raison de leur extraordinaire efficacité à absorber la lumière, ce qui est crucial pour les énergies renouvelables et d’autres technologies. Dans la revue Nano Letters, les chercheurs rendent compte de leur étude, qui fera progresser les domaines de la nanoplasmonique et de la nanophotonique grâce à ses plateformes technologiques prometteuses.


Une impulsion laser très courte (couleur bleue) excite les nanotiges d’or plasmoniques, entraînant des changements caractéristiques dans le champ électrique transmis (couleur jaune). L’échantillonnage de ce champ permet de déduire le champ plasmonique de la nanoparticule.

Les plasmons de surface localisés constituent une excitation unique d’électrons dans des métaux à l’échelle nanométrique tels que l’or ou l’argent, où les électrons mobiles du métal oscillent collectivement avec le champ photoélectrique. Cela conduit à une intensification de l’énergie lumineuse, ce qui permet des applications en photonique et en conversion d’énergie, par exemple en photocatalyse. Pour développer de telles applications, il est important de comprendre les détails de l’entraînement et de l’amortissement du plasma. Cependant, le développement d’expériences pertinentes pose un problème : les processus se déroulent sur des échelles de temps très courtes (quelques femtosecondes).

La communauté attoseconde, dont les auteurs principaux Matthias Kling et Francesca Calligari, ont développé des instruments pour mesurer le champ électrique oscillant des impulsions laser ultracourtes. Dans l’une de ces méthodes d’échantillonnage sur le terrain, une impulsion laser intense est focalisée dans l’air entre deux électrodes, générant un courant pouvant être mesuré. L’impulsion intense est ensuite recouverte d’une impulsion de signal faible qui sera décrite. L’impulsion du signal module le taux d’ionisation et donc le courant généré. L’examen du délai entre les deux impulsions fournit un signal dépendant du temps et proportionnel au champ électrique de l’impulsion du signal.

READ  Deux points géants se cachent profondément dans la terre, semblant changer de forme

« Nous avons utilisé cette configuration pour la première fois pour caractériser le champ de signal émergeant d’un échantillon plasmonique du matériau excité par résonance », explique Francesca Calligari, scientifique principale à DESY, professeur de physique à l’Université de Hambourg et porte-parole du CUI : Pôle d’excellence en imagerie avancée. La différence entre l’impulsion reconstruite et l’interaction du plasmon avec l’impulsion de référence a permis aux scientifiques de suivre l’émergence et la désintégration rapide du plasmon, ce qu’ils ont confirmé par des calculs de modèles électrodynamiques.

« Notre approche peut être utilisée pour caractériser des échantillons plasmoniques arbitraires dans des conditions ambiantes et en champ lointain », ajoute le professeur Holger Lange, scientifique du CUI. De plus, une caractérisation précise du champ laser issu des nanomatériaux plasmoniques pourrait constituer un nouvel outil pour améliorer la conception de dispositifs de mise en forme de phase pour les impulsions laser ultracourtes.

Message d’origine

Continue Reading

Trending

Copyright © 2023