Connect with us

science

Des chercheurs observent pour la première fois un catalyseur lors d’une réaction électrochimique

Published

on

Des chercheurs observent pour la première fois un catalyseur lors d’une réaction électrochimique

Les réactions électrochimiques sont essentielles à la fabrication de divers produits dans les industries.

La fabrication de l’aluminium, des tuyaux en PVC, du savon et du papier dépend de ces réactions électrochimiques, qui font également partie intégrante du fonctionnement des batteries des appareils électroniques, des voitures, des stimulateurs cardiaques et bien plus encore. De plus, elle a le potentiel de révolutionner la production d’énergie durable et l’utilisation des ressources.

Le cuivre et les catalyseurs similaires jouent un rôle crucial dans la catalyse de ces réactions et sont largement utilisés dans les applications électrochimiques industrielles. Cependant, le manque de compréhension du comportement des catalyseurs au cours des réactions a entravé le développement de catalyseurs améliorés. Jusqu’à présent, les chercheurs n’étaient capables d’imager les stimuli qu’avant et après les réactions, ce qui laisse un vide dans la compréhension des processus qui se produisent entre les deux.

Une collaboration entre le California Institute for Nanosystems de l’Université de Californie et le Lawrence Berkeley National Laboratory a supprimé cette limitation. L’équipe a utilisé une cellule électrochimique spécialement conçue pour surveiller la structure atomique du catalyseur en cuivre pendant la réaction conduisant à la décomposition du dioxyde de carbone.

Cette méthode offre un moyen potentiel de convertir les gaz à effet de serre en carburant ou en d’autres matériaux précieux. Les chercheurs ont enregistré des cas dans lesquels le cuivre formait des amas liquides puis disparaissait à la surface du catalyseur, entraînant des piqûres visibles.

« Pour quelque chose qui est si omniprésent dans nos vies, nous comprenons très peu de choses sur le fonctionnement des stimuli en temps réel. » a déclaré le co-auteur Bri Narang, professeur de sciences physiques à l’UCLA et membre du CNSI. « Nous avons désormais la capacité d’observer ce qui se passe au niveau atomique et de le comprendre d’un point de vue théorique.

« Tout le monde bénéficierait de la conversion directe du dioxyde de carbone en carburant, mais comment pouvons-nous le faire à moindre coût, de manière fiable et à grande échelle ? » a ajouté Narang, qui occupe également un poste en génie électrique et informatique à la School of Engineering de l’UCLA. « C’est le genre de science fondamentale qui devrait faire avancer ces défis. »

Sur la gauche, une flèche rouge suit le mouvement d’un atome de cuivre individuel pendant la réaction électrochimique. À droite, les flèches jaunes indiquent les piqûres restant dans la surface du catalyseur. Source de l’image : Qiubo Zhang/Laboratoire national Lawrence Berkeley

Les découvertes dans le domaine de la recherche sur le développement durable ont des implications significatives, et la technologie qui permet ces découvertes a le potentiel d’améliorer l’efficacité des processus électrochimiques dans diverses applications qui ont un impact sur la vie quotidienne.

READ  Le Crew Dragon de SpaceX se prépare pour son lancement nocturne vers la station spatiale - Spaceflight Now

Selon Yu Huang, co-auteur de l’étude et professeur Traugott et Dorothea Frederking et directeur du Département de science et d’ingénierie des matériaux à l’UC Samueli, l’étude pourrait aider les scientifiques et les ingénieurs à passer d’essais et d’erreurs à une approche de conception plus systématique. .

« Toute information que nous pouvons obtenir sur ce qui se passe réellement lors de la stimulation électrique est d’une aide précieuse pour notre compréhension de base et notre recherche de conceptions pratiques. » a déclaré Huang, membre du CNSI. « Sans cette information, c’est comme si nous lancions des fléchettes les yeux bandés et espérions atteindre quelque part près de la cible. »

Un microscope électronique de haute puissance de la fonderie moléculaire du Berkeley Lab a été utilisé pour capturer les images. Ce microscope utilise un faisceau d’électrons pour examiner des spécimens avec un niveau de détail inférieur à la longueur d’onde de la lumière.

Des défis sont rencontrés en microscopie électronique lorsqu’on tente de révéler la structure atomique des matériaux dans des environnements liquides, comme le bain d’électrolyte salin nécessaire à une réaction électrochimique.

L’ajout d’électricité à l’échantillon augmente la complexité du processus. L’auteur correspondant Haiime Cheng, scientifique principal au Berkeley Lab et professeur adjoint à l’UC Berkeley, et ses collègues ont développé un dispositif hermétiquement fermé pour surmonter ces obstacles.

Les scientifiques ont effectué des tests pour s’assurer que le flux d’électricité dans le système n’affectait pas l’image résultante. En se concentrant sur l’endroit exact où le catalyseur en cuivre rencontre l’électrolyte liquide, l’équipe a enregistré les changements qui se sont produits sur une période d’environ quatre secondes.

READ  La consommation de produits avec différents pourcentages de cacao peut-elle affecter la sensation de douleur musculaire ?

Au cours de la réaction, la structure du cuivre s’est transformée d’un réseau cristallin régulier, généralement présent dans les métaux, en une masse irrégulière. Ce faisceau désordonné, composé d’atomes de cuivre et d’ions chargés positivement ainsi que de quelques molécules d’eau, s’est ensuite déplacé à la surface du catalyseur. Ce faisant, les atomes ont été échangés entre du cuivre régulier et irrégulier, piquant la surface du catalyseur. Finalement, la masse irrégulière a disparu.

« Nous ne nous attendions pas à ce que la surface se transforme en une forme amorphe puis revienne à une structure cristalline. » a déclaré le co-auteur Yang Liu, étudiant diplômé de l’UCLA dans le groupe de recherche de Huang. « Sans cet outil spécial pour observer le système en action, nous ne serions jamais en mesure de capturer ce moment. Les progrès des outils de caractérisation comme ceux-ci permettent de nouvelles découvertes fondamentales, nous aidant à comprendre le fonctionnement des matériaux dans des conditions réelles. »

Référence du magazine :

  1. Qiubo Zhang, Zhigang Song, Qianhu Sun, Yang Liu, Jiawei Wan, Sophia B. Betzler, Qi Cheng, Junyi Shangguan, Karen C. Bustillo, Peter Ercius, Bryneha Narang, Yue Huang et Haimei Cheng. Dynamique atomique des interfaces solide-liquide électrifiées dans les cellules liquides TEM. Nature, 2024 ; Identification numérique : 10.1038/s41586-024-07479-s

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Les échantillons d’astéroïdes faisaient autrefois partie d’un monde plus humide

Published

on

Les échantillons d’astéroïdes faisaient autrefois partie d’un monde plus humide

Cela fait neuf mois que le vaisseau spatial OSIRIS-REx de la NASA a renvoyé des échantillons de l’astéroïde Bennu sur Terre. Les échantillons représentent certains des matériaux primordiaux et vierges du système solaire. Il est parvenu entre les mains des scientifiques et leurs travaux révèlent quelques surprises.

Certains matériaux présents dans les échantillons suggèrent que Bennu avait un passé aqueux.

La NASA a choisi Bennu pour la mission d’échantillonnage OSIRIS-REx pour plusieurs raisons. Premièrement, il s’agit d’un astéroïde géocroiseur (NEA), il est donc relativement proche de la Terre. Il n’est pas non plus très grand (environ 500 mètres de diamètre) et tourne suffisamment lentement pour permettre un échantillonnage en toute sécurité.

Mais la raison principale était peut-être sa composition. C’est un astéroïde de type B, un sous-type d’astéroïde carboné, ce qui signifie… Il contient des molécules organiquesTrouver des molécules organiques dans tout le système solaire est un moyen de retracer son origine et sa formation.

Le retour d’échantillons sur Terre constitue le moyen le meilleur et le plus complet d’étudier les astéroïdes. Les fragments d’astéroïdes qui tombent sur Terre ont une valeur scientifique. Mais une grande partie des matériaux les plus légers brûle tout simplement lorsqu’elle pénètre dans l’atmosphère terrestre, laissant un énorme trou dans notre compréhension.

Les missions spatiales semblent toujours nous surprendre d’une manière ou d’une autre. S’ils ne le faisaient pas, ils seraient moins incités à les envoyer. Dans ce cas, l’échantillon contient des produits chimiques qu’OSIRIS-REx n’a pas pu détecter lors de l’étude de Bennu.

« Bennu aura probablement fait partie d’un monde plus humide à un moment donné. »

Dante Lauretta, chercheur principal de la mission OSIRIS-REx

Une nouvelle recherche dans la revue Meteoritics and Planetary Science présente ces résultats. C’est intitulé « Astéroïde (101955) Bennu en laboratoire : Caractéristiques de l’échantillon collecté par OSIRIS-REx.« Le co-auteur est Dante S. Lauretta, chercheur principal de la mission OSIRIS-REx et professeur de sciences planétaires au laboratoire lunaire et planétaire de l’université d’Arizona. L’article donne un aperçu de l’échantillon et sert de catalogue à partir duquel les chercheurs peuvent commander des échantillons de matériel pour leurs recherches.

« Avoir l’opportunité d’approfondir l’échantillon OSIRIS-REx de Bennu après toutes ces années est très excitant », a déclaré Lauretta dans un communiqué de presse. « Cette avancée répond non seulement à des questions de longue date sur les débuts du système solaire, mais ouvre également de nouvelles voies de recherche sur la formation de la Terre en tant que planète habitable. Les idées décrites dans notre document de synthèse ont suscité davantage de curiosité, ce qui nous a donné envie de le faire. explorer plus profondément.

READ  Inflammation liée à un système d’élimination de l’ADN défectueux
Cette image montre l’échantillon Bennu d’OSIRIS-REx provenant de TAGSAM dans huit plateaux. Crédit image : NASA/UoA/LPL

« Nous décrivons la livraison initiale et l’affectation de cet échantillon d’astéroïde et présentons ses propriétés physicochimiques et minéralogiques issues des premières analyses », ont écrit les auteurs dans leur article. Le spécimen de 120 grammes remonte à des milliards d’années. Il est pur, ce qui signifie qu’il n’a ni fondu ni solidifié depuis sa formation.

L’équipe de traitement des astromatériaux du Johnson Space Center de la NASA a utilisé la procédure Advanced Astromaterials Imaging and Visualization (AIVA) pour documenter l’état de l’échantillon et de l’équipement d’échantillonnage. Cela a été fait alors que l’échantillon était encore dans sa boîte à gants, qui présente à cet effet une réflectivité élevée. Il s’agit d’un processus méticuleux qui implique des centaines d’images empilées ensemble.

En général, l’échantillon est sombre. Mais des textures plus lumineuses sont intercalées partout. « Certaines pierres semblent être tachetées d’un matériau plus brillant qui forme des veines et des écailles », ont écrit les chercheurs. Le plus gros morceau mesure environ 3,5 cm de long, mais il est constitué en grande partie de poussière. Les pierres en forme de schiste ont la densité la plus faible et les pierres mouchetées ont la densité la plus élevée.

« Certaines phases à haute réflectivité ont une structure cristalline hexagonale, tandis que d’autres phases apparaissent sous forme d’amas de petites sphères, de plaquettes et de dodécaèdres », écrivent les auteurs. L’ensemble contient également quelques pièces individuelles à haute réflectivité.

En général, les matériaux sont regroupés en trois catégories :

  • Un matériau en forme de crête avec des surfaces inégales. Leurs surfaces sont caractérisées par des crêtes arrondies et des dépressions rappelant le chou-fleur. Ce matériau est généralement sombre mais contient des matériaux microscopiques plus brillants.
  • Particules aux coins cassés et aux bords plus nets. Il a des formes hexagonales et polygonales et quelques couches. Ils sont généralement sombres, mais certaines faces présentent des éclats métalliques et des reflets spéculaires. Il contient également des inclusions hautement réfléchissantes telles que des matériaux irréguliers.
  • Les particules tachetées sont pour la plupart de couleur plus foncée mais contiennent des couches de matériau réfléchissant. Le matériau réfléchissant comble les petites fissures du matériau plus foncé et apparaît également sous forme de flocons brillants individuels.
READ  Des chercheurs de l'UH développent une technologie d'imagerie 3D t
Les trois sous-types de matériaux trouvés dans l'échantillon de Bennu sont : les bosses, les coins et les taches.  Crédit image : Lauretta et al.  2024.
Les trois sous-types de matériaux trouvés dans l’échantillon de Bennu sont : les bosses, les coins et les taches. Crédit image : Lauretta et al. 2024.

Des échantillons représentatifs ont également été analysés dans d’autres institutions aux États-Unis à l’aide de divers instruments, notamment un spectromètre de masse à plasma, un spectromètre infrarouge et un tomographe informatique à rayons X. Ces analyses ont révélé d’autres informations, telles que les densités de particules et l’abondance des éléments. Il contient notamment des informations isotopiques sur l’hydrogène, le carbone, l’azote et l’oxygène. Il compare également cette abondance à celle trouvée sur d’autres astéroïdes.

Mais ce qui ressort de cette analyse préliminaire, c’est l’échantillon serpentin Et d’autres minéraux argileux. Sa présence est similaire à celle que l’on trouve sur les bords du milieu de l’océan sur Terre, là où le manteau terrestre rencontre l’eau.

Les fonds marins s'étendent en crêtes médio-océaniques à la surface de la Terre.  Les roches chaudes et montantes rencontrent l’océan, créant un processus de barattage.  Crédit image : par 37ophiuchi BrucePL - basé sur le diagramme Fichier : Mittelozeanischer Ruecken - Schema.png.  Je l'ai traduit de l'allemand vers l'anglais et révisé les contours des unités rock.  CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=79658206
Les dorsales médio-océaniques sur Terre sont le lieu où se produit la propagation des fonds marins. Les roches chaudes et montantes rencontrent les océans, provoquant le processus de serpentinisation. Source de l’image : Par 37ophiuchi BrucePL – basé sur le fichier de diagramme : Mittelozeanischer Ruecken – Schema.png. Je l’ai traduit de l’allemand vers l’anglais et j’ai revu les contours des unités rocheuses. CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=79658206

Sur Terre, le contact entre les matériaux du manteau et l’eau des océans entraîne également la formation d’argiles et d’autres minéraux tels que les carbonates, les oxydes de fer et les sulfures de fer. Ces minéraux ont également été trouvés dans l’échantillon de Bennu.

Mais il y a une découverte qui se démarque parmi les autres : les phosphates hydrosolubles. Ces composés se trouvent dans toute la biosphère terrestre et constituent un élément important de la biochimie.

La mission Hayabusa 2 de l’Agence japonaise d’exploration aérospatiale a trouvé un phosphate similaire dans un échantillon prélevé sur l’astéroïde Ryugu. Mais le phosphate de Benno est différent. Contrairement à tout autre échantillon d’astéroïde, il ne contient pas d’impuretés ni de grains de différentes tailles. Le phosphate de sodium et de magnésium dans l’échantillon de Bennu indique un passé aqueux.

Cette image montre du phosphate réfléchissant dans l'une des roches de l'échantillon Bennu.  La présence de phosphate indique un passé aqueux.  Crédit image : Lauretta et al.  2024.
Cette image montre du phosphate réfléchissant dans l’une des roches de l’échantillon Bennu. La présence de phosphate indique un passé aqueux. Crédit image : Lauretta et al. 2024.

« La présence et l’état du phosphate, ainsi que d’autres éléments et composés sur Bennu, indiquent un passé aqueux pour l’astéroïde », a déclaré Lauretta. « Bennu fait probablement partie d’un monde plus humide, bien que cette hypothèse nécessite une enquête plus approfondie.

READ  La consommation de produits avec différents pourcentages de cacao peut-elle affecter la sensation de douleur musculaire ?

Dans leurs recherches, les auteurs identifient plusieurs hypothèses sur le passé de Bennu. L’un d’eux déclare que « … les roches dominantes à la surface de Bennu ont des caractéristiques minéralogiques, pétrologiques et de composition très similaires à celles des chondrites carbonatées plus hydro-altérées ».

L’échantillon Bennu montre également que l’astéroïde est chimiquement primitif, ce qui signifie qu’il est resté largement inchangé depuis sa formation. Les roches n’ont ni fondu ni solidifié depuis leur formation initiale. Les propriétés fondamentales de l’astéroïde reflètent également celles du Soleil.

« L’échantillon que nous avons ramené constitue actuellement le plus grand réservoir de matière d’astéroïde non altérée sur Terre », a déclaré Loretta.

Cette figure montre une image de lumière réfléchie (a) et une image de fluorescence UV (b) d'une partie de l'échantillon de Bennu.  La micrographie UV montre la répartition du carbonate, du phosphate (fluorescence bleue) et des nanosphères organiques (fluorescence jaune).  Crédit image : Lauretta et al.  2024.
Cette forme de recherche montre une image de lumière réfléchie (a) et une image de fluorescence ultraviolette (b) d’une partie de l’échantillon de Bennu. L’image du microscope à fluorescence UV montre la répartition des carbonates, des phosphates (fluorescence bleue) et des nanosphères organiques (fluorescence jaune). Crédit image : Lauretta et al. 2024.

Des recherches préliminaires montrent également que Bennu est riche en carbone et en azote, des indices importants sur les origines de l’astéroïde. Ces produits chimiques jouent également un rôle dans l’émergence de la vie, ajoutant à leur curiosité.

« Ces résultats soulignent l’importance de collecter et d’étudier les matériaux provenant d’astéroïdes comme Bennu, en particulier les matériaux de faible densité qui brûlent généralement lorsqu’ils entrent dans l’atmosphère terrestre », a déclaré Lauretta. « Ces matériaux détiennent la clé pour élucider les processus complexes de formation du système solaire et de biochimie qui pourraient avoir contribué à l’émergence de la vie sur Terre. »

Harold Connolly est l’un des auteurs de l’étude et un scientifique chargé des échantillons de mission qui dirige l’équipe d’analyse des échantillons. Il est également professeur à l’Université Rowan à Glassboro, dans le New Jersey, et chercheur invité à l’Université de l’Arizona. « Les échantillons de Bennu sont des roches exoplanétaires incroyablement belles », a déclaré Connolly. « Chaque semaine, l’analyse effectuée par l’équipe d’analyse d’échantillons OSIRIS-REx fournit de nouveaux résultats, parfois surprenants, qui contribuent à imposer des contraintes importantes sur l’origine et l’évolution des planètes semblables à la Terre. »

Et ce n’est que le début. Grâce à ces évaluations et à ce catalogage, les chercheurs du monde entier demanderont des échantillons pour leurs propres recherches.

D’autres secrets seront révélés.

Continue Reading

science

La tache rouge sur Jupiter n’est peut-être pas la même que celle observée en 1665

Published

on

Dans les années 1660, l’astronome italien Gian Domenico Cassini a découvert quelque chose en observant Jupiter : un immense point aujourd’hui connu comme la signature de la planète. On pense que cette caractéristique planétaire, connue sous le nom de Grande Tache Rouge ou Tache Permanente, est la preuve d’une tempête jovienne massive. Mais de nouvelles recherches suggèrent que la tempête que les astronomes peuvent voir aujourd’hui n’est pas la même que celle que Cassini a vue il y a près de quatre siècles.

Ce qui ressemble à une zone rouge de l’espace est en réalité un vortex de tornade géant deux fois plus grand que la Terre. Des observations récentes suggèrent que la tempête implique des vents soufflant à des vitesses allant jusqu’à 400 miles par heure et que sa couleur distinctive pourrait être due à l’interaction entre les éléments de l’atmosphère de Jupiter et les rayons cosmiques ou d’autres formes de rayonnement. Mais même si le lieu est connu depuis des siècles, il véhicule encore de nombreuses connotations. Des énigmes Pour les chercheurs.

Cassini est connu comme le premier pionnier de l’astronomie télescopique avis La tache a été décrite en 1665 comme un ovale sombre, et elle a écrit que la tache était « permanente et qu’on la voyait souvent revenir au même endroit, de même taille et de même forme ». Les astronomes ont enregistré des observations ponctuelles jusqu’en 1713, mais ensuite les observations se sont arrêtées. Il faudra attendre 1831 pour que d’autres scientifiques signalent à nouveau un emplacement au même endroit que celui identifié par Cassini.

READ  SOFIA réalise la première détection d'oxygène lourd dans la haute atmosphère terrestre

en écrivant Dans Geophysical Research Letters, des chercheurs contemporains ont utilisé des observations historiques pour suivre la taille et le mouvement de la nappe au fil des ans et comparer ces observations anciennes avec les observations modernes. Ils ont ensuite simulé les différentes manières dont la tache pouvait apparaître.

Leurs analyses indiquent que la tache observée aujourd’hui ressemble plus à celle observée par Cassini au XIXe siècle qu’à celle observée par Cassini il y a longtemps. Au fil du temps, la tache a rétréci et est devenue plus ronde, peut-être parce qu’elle tournait plus rapidement, ont écrit les chercheurs. Ils ont conclu que l’endroit était probablement formé par des vents instables qui ont produit une première tempête observable qui a ensuite disparu puis est revenue.

« C’était très motivant et inspirant de se tourner vers les observations et les dessins de Cassini », a déclaré Agustín Sánchez La Vega, professeur de physique appliquée à l’Université du Pays Basque à Bilbao, en Espagne, qui a dirigé la recherche, lors d’une conférence de presse. lancement. « D’autres avant nous ont exploré ces observations, et maintenant nous avons mesuré les résultats », a-t-il ajouté.

Continue Reading

science

Les météorites frappent Mars plus souvent qu’on ne le pensait (journal)

Published

on

Les météorites frappent Mars plus souvent qu’on ne le pensait (journal)

Paris : Les enregistrements sismiques d’un vaisseau spatial de la NASA ont révélé que la planète Mars est bombardée presque quotidiennement par des météorites de la taille d’un ballon de basket, soit cinq fois plus que les estimations précédentes.

Avant la publication de la nouvelle étude vendredi, la meilleure estimation du nombre de météorites ayant frappé Mars était faite en examinant des images prises par des vaisseaux spatiaux en orbite ou des modèles basés sur des cratères sur la Lune.

Mais la sonde InSight de la NASA, qui s’est posée sur une plaine martienne appelée Elysium Planitia en 2018, a permis aux scientifiques d’écouter pour la première fois les grondements intérieurs de la planète rouge.

Mars fait environ deux fois la taille de la Lune et est beaucoup plus proche de la principale ceinture d’astéroïdes de notre système solaire, ce qui en fait une cible privilégiée pour les gros rochers qui traversent l’espace.

La plupart des météorites qui volent vers la Terre se désagrègent dans notre atmosphère. Mais l’atmosphère de Mars est 100 fois plus fine que celle de la Terre, n’offrant que peu de protection.

Au lieu de passer au crible des images prises de loin, l’équipe internationale de chercheurs à l’origine de la nouvelle étude Nature Astronomy a pu écouter des météorites entrant en collision avec Mars.

« Écouter les impacts semble être plus efficace que les rechercher si nous voulons comprendre à quelle fréquence ils se produisent », a déclaré le co-auteur de l’étude Gareth Collins de l’Imperial College de Londres dans un communiqué.

READ  Inflammation liée à un système d’élimination de l’ADN défectueux

Les chercheurs ont utilisé les données du sismomètre d’InSight pour estimer que chaque année, Mars est frappée par 280 à 360 météorites, qui font toutes exploser des cratères de plus de huit mètres (26 pieds) de large.

« Ce taux était environ cinq fois supérieur au nombre estimé à partir des seules images orbitales », a déclaré Geraldine Zenhausern, co-auteure de l’étude de l’Université technologique fédérale de Zurich.

Missions sur Mars, prenez note

Les tempêtes de poussière fréquentes et intenses rendent particulièrement difficile pour les vaisseaux spatiaux en orbite autour de Mars de voir les petits cratères de météorites en dessous.

Il est plus facile de découvrir de nouveaux cratères dans des zones plates et poussiéreuses, mais « ce type de terrain couvre moins de la moitié de la surface de Mars », a expliqué Zenhausern.

« Cependant, le sismomètre sensible InSight peut entendre chaque impact dans la plage d’affaissement », a-t-elle ajouté.

Les scientifiques ont suivi un signal acoustique spécifique produit lorsque des météorites frappent Mars pour estimer le diamètre et la distance des cratères depuis InSight.

Ils ont ensuite calculé le nombre de cratères survenus en un an à proximité de l’atterrisseur, avant d’extrapoler ce nombre à l’ensemble de la planète.

« Il s’agit du premier article de ce type permettant de quantifier la fréquence à laquelle les météorites impactent la surface de Mars à partir de données sismiques », a déclaré Domenico Giardini, qui travaille sur la mission InSight.

Il a ajouté que ces données devraient être prises en compte lors de la « planification des futures missions vers Mars ».

READ  Le changement climatique assombrit la Terre, ce qui à son tour réchauffe le climat

Les chercheurs ont estimé qu’une grosse frappe de météorite provoquerait un cratère de 30 mètres de diamètre à la surface de Mars.

Une fois par mois – quelque chose qui pourrait rester dans l’esprit des astronautes qui espèrent marcher un jour sur la surface rouge.

Publié dans le journal Al-Fajr le 29 juin 2024

Continue Reading

Trending

Copyright © 2023