Un article récemment publié dans Rapports scientifiques Fournit un aperçu des nouvelles procédures de construction tout en améliorant la résistance et la précision du contrôle des contraintes dans les ancrages actifs et les unités de précontrainte courtes pour les ponts à longue portée, en ciblant spécifiquement les dangers potentiels.
arrière-plan
Les fermes à câbles ou les suspensions sont couramment utilisées dans la conception de ponts à longue portée. La durabilité de ces solutions dépend de la fatigue et/ou des dommages causés par la corrosion dus aux charges dynamiques telles que la circulation et le vent. L’impact de la fatigue, de la corrosion et des dommages causés par les câbles en service est principalement évalué par le suivi des contraintes axiales.
Diverses méthodes et dispositifs directs et indirects ont été développés pour mesurer la contrainte des câbles de pont. Les jauges de contrainte directes comprennent des cellules de pesée, des capteurs à réseau de Bragg à fibre optique et des capteurs de contrainte magnétoélastiques. Au lieu de cela, les méthodes à corde vibrante sont généralement utilisées pour évaluer les contraintes indirectes et rapides dans les câbles de pont.
Les éléments structurels auxiliaires utilisés lors de la construction de ponts, tels que les pylônes de câbles temporaires, subissent également des pertes de précontrainte instantanées élevées. Par conséquent, il est essentiel de surveiller la contrainte de précontrainte et la variation temporelle de cette contrainte pour garantir que le composant fonctionne comme souhaité.
Méthodes
Les chercheurs ont présenté une revue des systèmes actuellement utilisés pour contrôler la surveillance des contraintes dans les érections de ponts et les unités de précontrainte pendant la phase de construction du pont Tage, une infrastructure à grande vitesse unique en Espagne conçue et construite entre 2012 et 2016.
Le pont Tajo a été soigneusement planifié pour répondre à des normes élevées de vitesse, d’efficacité et de sécurité grâce à une ingénierie avancée et une esthétique moderne. Pour étudier expérimentalement la réponse structurelle de la travée de l’arc central du pont, les chercheurs ont conçu un système de surveillance de l’état structurel (SHMS) qui comprend plusieurs dispositifs et systèmes.
Ils comprennent un système de gestion et de normalisation du projet (M&USP) contenant des bases de données de projet fournies par les équipes de conception et de construction du pont et un système de capteurs (SS) comprenant 114 capteurs installés à divers endroits du pont. Par exemple, les cellules de pesée dans les câbles de suspension, les ancrages des pylônes à câbles fixes et les gabarits des trains dans les renforts en demi-arc.
Un système d’acquisition et de traitement de données (DA&PS) pour différents systèmes de capteurs est inclus dans le SHMS. De plus, un système de gestion et de traitement des données (DM&PS) a été conçu et programmé. Il a été utilisé pour transmettre, visualiser et stocker des données et créer des systèmes d’alerte précoce.
Enfin, un système d’évaluation de la sécurité des structures (SS&AS) a été développé. Il était composé de toutes les parties impliquées dans la construction du pont, y compris les équipes techniques et administratives. Ce sous-système a permis de surveiller les données matérielles et de les comparer avec les données théoriques du projet. Les résultats de la comparaison ont mis à jour les bases de données M&USP et les flux SHMS.
Le SHMS proposé a été utilisé pour surveiller la déformation subie par le renforcement des demi-arcs, des piliers d’ancrage et des tours d’ancrage. De plus, l’accélération de la moitié nord de l’arc, le gradient de température dans différentes sections structurelles et le vent soufflant sur la structure ont été surveillés.
Résultats et discussion
S’appuyant sur l’expérience du Tajo Bridge, les chercheurs ont reconsidéré de nouveaux systèmes de surveillance pour contrôler le stress. Les cellules de pesée pour stabilisateurs actifs doivent être capables de caractériser avec précision la force axiale totale transmise par le hauban de pont ou l’unité de précontrainte et fournir une solution robuste pour les environnements difficiles, les chocs et les impacts.
De plus, ils doivent fournir une mesure directe sans avoir recours à des intégrateurs de signaux. En conséquence, la cellule de pesée conçue est constituée d’un anneau métallique qui permet le passage du hauban de pont ou de l’unité de précontrainte. Il peut être placé entre les panneaux d’ancrage et de distribution sur la coque.
Trois dispositifs sont installés simultanément pour surveiller les supports du pont, notamment des cellules de pesée sur les ancrages actifs, des jauges de contrainte unidirectionnelles sur le ruban qui constitue les supports et des accéléromètres piézoélectriques sur les supports. Ceux-ci ont aidé à détecter divers phénomènes structurels pendant la construction, notamment les variations de contraintes lors de la construction du pont, les variations de contraintes dérivées du bétonnage de sections successives, l’analyse de la variation de force due à la contrainte de différents câbles et la détection des variations de force liées aux réajustements de charge dans les câbles de suspension.
De plus, un réseau de cellules de pesée simultanées multi-déformations est proposé dans chaque tour d’hébergement pour surveiller les unités de précontrainte courtes. Il garantissait une précontrainte correcte et une estimation précise des pertes subies par le contact précontraint.
Conclusion
Dans l’ensemble, cette étude s’est concentrée sur l’amélioration de la gestion des contraintes pour les haubans de pont, les câbles de suspension et les unités de précontrainte courtes en se concentrant sur un paramètre uniforme : la contrainte. Des cellules de pesée avancées sont conçues et installées sur des points de montage actifs pour un contrôle de pression puissant et précis. En outre, la mise en œuvre d’un nouveau réseau de cellules de pesée multi-jauges de contrainte simultanées pour les unités de précontrainte courtes s’est avérée cruciale dans les situations où les pertes de précontrainte peuvent atteindre des ampleurs importantes.
Pour valider ces développements, les chercheurs ont présenté l’expérience pratique et les résultats obtenus en appliquant ces méthodologies pour surveiller la réponse structurelle lors de la construction du pont Tajo en utilisant la technique en porte-à-faux à haubans. Ces méthodes peuvent aider à déterminer les pertes de précontrainte, qui ont dépassé 10 % dans le pont du Tajo, et à planifier de nouveaux processus de précontrainte dans ces structures vitales.
Référence du journal
Gut-Alonso, A., García-Sanchez, D., Ramos-Gutierrez, O. R. et Wintertimanis, F. (2024). Améliorer le contrôle de la précision des mesures de contraintes dans la construction de ponts à longue portée. Rapports scientifiques, 14(1), 10961. https://doi.org/10.1038/s41598-024-61873-y, https://www.nature.com/articles/s41598-024-61873-y