Connect with us

science

Cet ensemble de données haute résolution sur la surface de la Terre fournit des détails sur la modélisation du système terrestre.

Published

on

Cet ensemble de données haute résolution sur la surface de la Terre fournit des détails sur la modélisation du système terrestre.

Les images satellite haute résolution montrent (a) un terrain détaillé à des altitudes variées, (b) l’agriculture dans une zone désertique, (c) les modèles de déforestation et (d) l’urbanisation avec des structures denses et des aménagements planifiés, soulignant l’importance de capturer ces détails fins. Modéliser le système Terre à l’échelle kilométrique. Droits d’auteur : Google Maps, 2024

Les modèles du système terrestre nous aident à comprendre les changements climatiques et environnementaux. Grâce aux progrès de la puissance de calcul, les modèles du système terrestre peuvent désormais être exécutés à une résolution kilométrique, capturant des détails extrêmement fins pour mieux prédire les conditions météorologiques extrêmes et comprendre les cycles de l’eau, du carbone et de l’énergie.

Cependant, les modèles actuels s’appuient généralement sur des données anciennes de faible résolution (~ 50 km) sur la surface terrestre, qui peuvent manquer de détails importants.

étudePublié dans Données scientifiques du système terrestreDe nouvelles données de surface terrestre à haute résolution (1 km) ont été développées pour la période 2001-2020, y compris les paramètres d’utilisation des terres, de végétation, de sol et de topographie.

La recherche fournit les premiers ensembles de données complets sur la surface terrestre d’un kilomètre pour améliorer considérablement la capacité de simuler l’ESM à l’échelle k. L’utilisation des nouveaux ensembles de données permet une prévision plus précise des cycles de l’eau, du carbone et de l’énergie dans les simulations ELM2 à une résolution de 1 km sur la frontière des États-Unis. Ce travail constitue une étape importante vers la modélisation du système terrestre à l’échelle k, soutenant le développement de meilleures stratégies d’atténuation et d’adaptation au changement climatique.

Les résultats montrent que les paramètres de surface terrestre à haute résolution contribuent à la grande variation spatiale dans les simulations ELM2 de l’humidité du sol, de la chaleur latente, du rayonnement à ondes longues émis et du rayonnement à ondes courtes absorbé. En moyenne, environ 31 à 54 % des informations spatiales sont perdues en augmentant la résolution de 1 à 12 km des simulations ELM2.

À l’aide de méthodes d’apprentissage automatique interprétables, les facteurs influents à l’origine de l’hétérogénéité spatiale et de la perte d’informations spatiales sont identifiés pour les simulations ELM2, mettant en évidence l’influence significative de l’hétérogénéité spatiale et de la perte d’informations pour différents paramètres de surface terrestre, ainsi que pour les conditions climatiques moyennes. La comparaison avec quatre ensembles de données de référence indique que ELM2 fonctionne généralement bien pour simuler l’humidité du sol et les flux d’énergie de surface.

Plus d’information:
Ling-Cheng Li et al., Paramètres mondiaux de la surface terrestre à l’échelle de 1 km pour la modélisation du système terrestre à l’échelle kilométrique, Données scientifiques du système terrestre (2024). DOI : 10.5194/essd-16-2007-2024

Fourni par le Laboratoire national du Nord-Ouest du Pacifique


la citationL’ensemble de données haute résolution sur la surface de la Terre fournit des détails sur la modélisation du système terrestre (3 juillet 2024) Récupéré le 3 juillet 2024 sur https://phys.org/news/2024-07-high-resolution-surface-dataset-earth.html

Ce document est soumis au droit d’auteur. Nonobstant toute utilisation équitable à des fins d’étude ou de recherche privée, aucune partie de celui-ci ne peut être reproduite sans autorisation écrite. Le contenu est fourni à titre informatif uniquement.

READ  Un astrophysicien identifie une étoile qui a explosé à 21 millions d'années-lumière
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le télescope James Webb met en évidence la structure de la glace d’eau interstellaire

Published

on

Le télescope James Webb met en évidence la structure de la glace d’eau interstellaire

Cette image prise par la caméra proche infrarouge (NIRCam) du télescope spatial James Webb de la NASA montre la région centrale d’un nuage moléculaire sombre appelé Chamaeleon I, situé à 630 années-lumière. Le matériau nuageux frais et léger (bleu, centre) est éclairé en infrarouge par la lueur de la protoétoile Ced 110 IRS 4 (orange, en haut à gauche). La lumière de nombreuses étoiles d’arrière-plan, visibles sous forme de points orange derrière le nuage, peut être utilisée pour détecter la glace dans le nuage, qui absorbe la lumière des étoiles qui le traverse. Image plus grande

Grâce au télescope spatial James Webb, une équipe de chercheurs comprenant Paola Caselli, Barbara Michela Giuliano et Basil Housquinet de l’Institut Max Planck de physique des particules a pu sonder en profondeur le cœur de nuages ​​denses, révélant des détails de la glace interstellaire qui étaient auparavant inobservables. . L’étude se concentre sur la première région des caméléons, en utilisant la caméra NIRCam du télescope spatial James Webb pour mesurer les raies spectrales de centaines d’étoiles derrière le nuage.

Pour la première fois, de faibles caractéristiques spectrales appelées « hydroxyles pendants » ont été détectées, indiquant que les molécules d’eau ne sont pas entièrement liées à la glace. Ces caractéristiques permettent de suivre la porosité et la modification des grains de glace à mesure qu’ils évoluent des nuages ​​moléculaires aux disques protoplanétaires. Cette découverte améliore notre compréhension de la structure des grains de glace et de leur rôle dans la formation des planètes.

Grâce à la sensibilité sans précédent du télescope James Webb, nous sommes en mesure d’explorer la glace au plus profond des noyaux de nuages ​​denses, où l’extinction est si élevée que les observatoires précédents ne pouvaient pas la détecter. Ces lignes de visée constituent le chaînon manquant entre la formation initiale de glace à la surface des grains de poussière dans les nuages ​​moléculaires et l’agrégation de grains de glace en planètes glacées, un processus encore largement mal compris qui se produit dans le disque protoplanétaire entourant une nouvelle étoile. En approfondissant le lieu de naissance des étoiles, nous fournirons de nouvelles preuves de ces modifications apportées aux grains de glace.

Dans le programme Ice Age ciblant Chamaeleon I, une région nuageuse dense proche de nous dans la Voie Lactée, les observations de la partie la plus dense du nuage à l’aide de l’instrument NIRCam de JWST ont permis des mesures spectroscopiques simultanées des lignes de visée de centaines d’étoiles derrière le nuage.

La lumière de ces étoiles interagit avec les grains de glace lorsqu’elle traverse le nuage avant d’être capturée par le grand miroir du télescope James Webb et détectée. Jusqu’à présent, nous avons pu mesurer les principales caractéristiques d’absorption intensive associées aux principales espèces présentes dans la glace, à savoir l’eau, le dioxyde de carbone, le monoxyde de carbone, le méthanol et l’ammoniac. Grâce à la plus grande taille du miroir du télescope, nous pouvons désormais mesurer des caractéristiques beaucoup plus faibles.

Illustration de différents scénarios de liaisons hydroxyles observés dans le nuage sombre Cha I à l’aide du télescope spatial James Webb. Trois caractéristiques spectrales. © NASA, ESA, ASC, M. Zamani (ESA/Web); Sciences : M. K. McClure (Université de Leiden), F. Sun (Observatoire Steward) et Z. Smith (The Open University) et l’équipe ERS Ice Age.

Des études approfondies des emplacements et des caractéristiques des caractéristiques spectrales faibles révèlent certaines conditions physiques du corps. Ici, nous avons effectué la première détection d’un ensemble spécifique de bandes très faibles associées à seulement une petite fraction de molécules d’eau dans la glace.

Les caractéristiques spectroscopiques, que les astrophysiciens de laboratoire appellent « OH en suspension » et qu’elles mesurent dans la glace en laboratoire depuis des décennies, correspondent à des molécules d’eau qui ne sont pas entièrement liées à la glace et peuvent tracer des surfaces et des interfaces dans des grains de glace ou lorsqu’elles sont mélangées. L’eau est étroitement liée à d’autres espèces moléculaires présentes dans la glace.

Ces caractéristiques « OH pendantes » se situent dans une région spectrale inaccessible depuis la Terre, et bien qu’elles aient été activement recherchées depuis les années 1990, les observatoires spatiaux précédents couvrant cette gamme spectrale ne disposaient pas de la combinaison de résolution spectrale et de sensibilité requise pour les détecter, fournissant ainsi des limites supérieures. . Juste. Aujourd’hui, à l’ère du télescope spatial James Webb, nous pouvons utiliser ces signatures pour suivre la modification des grains de glace au cours de notre voyage vers la formation des planètes.

On s’attend depuis longtemps à ce que ces marqueurs, s’ils étaient découverts, soient utilisés pour suivre la porosité de la glace, c’est-à-dire que leur présence indiquerait des grains « pelucheux » de forte porosité tandis que leur absence indiquerait un compactage et une agrégation. Bien que cette explication simple soit encore débattue, la découverte réussie de ces signatures signifie désormais que nous pouvons les rechercher dans différents environnements et à différents moments du processus de formation des étoiles afin de déterminer si elles peuvent être utilisées comme indicateur de l’évolution de la glace sous conditions différentes.

« La découverte de la propriété de liaison des calottes glaciaires en suspension dans l’eau démontre l’importance de l’astrophysique en laboratoire pour l’interprétation des données JST », explique Barbara Michela Giuliano, l’une des auteurs. « Des informations détaillées sur les propriétés physiques de la glace observée nécessitent encore des recherches approfondies en laboratoire. soutien pour démêler les propriétés spectrales observées dans les régions.  » « Les objets denses du milieu interstellaire et des disques protoplanétaires et nous, ici au CAS, sommes heureux de fournir un tel soutien. »

« La haute sensibilité du télescope James Webb, combinée aux progrès étonnants de l’astrophysique en laboratoire, nous permet enfin d’étudier en détail la structure physique et la composition chimique de la glace interstellaire », explique Paula Caselli, qui a également contribué à cet article avec le doctorant Basil. Hoskenette. « Il est important de fournir les contraintes rigoureuses sur la modélisation chimique/dynamique nécessaire pour reconstruire notre histoire astrochimique, des nuages ​​interstellaires aux disques protoplanétaires en passant par les systèmes stellaires comme le nôtre. »

Cette étude montre que des grains de glace potentiellement « pelucheux » sont présents dans le nuage, affectant la chimie qui peut se produire dans ces régions et donc le degré de complexité chimique qui peut s’accumuler. Cette découverte ouvre également une nouvelle fenêtre pour étudier la formation planétaire, car ces caractéristiques spectrales nous permettent enfin de nous faire une idée de la répartition spatiale et de la diversité de la glace ainsi que de la façon dont elle évolue au cours de son voyage depuis les nuages ​​moléculaires jusqu’aux disques protoplanétaires et aux planètes. .

Détection des caractéristiques de glace insaisissables et pendantes des ions hydroxyle à ~ 2,7 µm dans Chamaeleon I à l’aide de JWST NIRCam.nature

Astrobiologie, Astrochimie,

READ  SpaceX et la NASA visent le 14 mars pour le prochain lancement de fret depuis la Station spatiale internationale
Continue Reading

science

Un stagiaire de recherche de l’US Navy découvre une étoile à neutrons « extrême » à rotation rapide

Published

on

Un stagiaire de recherche de l’US Navy découvre une étoile à neutrons « extrême » à rotation rapide

Amaris McCarver, stagiaire en télédétection au Laboratoire de recherche navale (NRL) des États-Unis, et une équipe d’astronomes ont découvert une étoile à neutrons en rotation rapide qui projette des faisceaux de rayonnement à travers l’univers comme une balise cosmique.

L’étoile à neutrons à rotation rapide, ou « pulsar », se trouve au sein de l’amas d’étoiles dense Glimpse-CO1, situé dans le plan galactique de la Voie Lactée, à environ 10,7 années-lumière de la Terre. Ce pulsar, qui tourne des centaines de fois par seconde, est le premier du genre découvert dans l’amas d’étoiles Glimpse-CO1. Le Very Large Telescope Array (VLA) a repéré le pulsar, appelé GLIMPSE-C01A, le 27 février 2021, mais il est resté enfoui dans une énorme quantité de données jusqu’à ce que McCarver et ses collègues le trouvent à l’été 2023.

Continue Reading

science

Processus et contrôle aujourd’hui | Porter le poids de l’espace : le rôle des micro-appuis dans l’habitation spatiale

Published

on

Processus et contrôle aujourd’hui |  Porter le poids de l’espace : le rôle des micro-appuis dans l’habitation spatiale

Alors que la NASA se prépare à son premier alunissage depuis près de 50 ans, l’idée d’une colonisation spatiale se rapproche. Les projections indiquent que les voyages spatiaux commerciaux, le tourisme spatial, les stations spatiales en orbite et les habitats lunaires pourraient devenir une réalité d’ici 2050. Cependant, pour que cela soit possible, la technologie doit résister aux conditions difficiles de l’espace, notamment aux températures extrêmes et aux exigences de propulsion électrique. Ici, Chris Johnson, directeur général de SMB Bearings, discute du rôle essentiel de Roulements de précision En rendant possible l’habitation dans l’espace.

Dans les décennies qui ont suivi le lancement de Spoutnik 1, le premier satellite artificiel lancé dans l’espace par l’Union soviétique en 1957, des astronautes se sont rendus sur la Lune, des sondes robotiques ont exploré le système solaire et des instruments spatiaux ont découvert de nombreuses planètes en orbite autour d’étoiles lointaines. Ces réalisations ont ouvert la voie au prochain pas de géant : l’existence humaine durable au-delà de la Terre.

La NASA a déterminé Les cinq principales techniques Les vaisseaux spatiaux ont besoin de nombreux éléments nécessaires pour survivre dans l’espace lointain. Ces éléments comprennent les systèmes de survie, les technologies de propulsion active, la gestion thermique, la radioprotection et les systèmes de communication et de navigation statiques.

Le choix des bons matériaux pour ces technologies sera crucial pour garantir leur fiabilité. En effet, la mission principale du prochain programme de la NASA est Mission lunaire Artémis 2Le projet devrait être lancé en 2025, dans le but de garantir que tous les systèmes d’engins spatiaux fonctionnent de manière durable dans l’espace lointain. Ces composants comprendront des roulements de précision, qui feront partie intégrante de la sécurité et de la fiabilité des engins spatiaux et des habitats spatiaux.

Applications dans l’espace lointain

Les roulements de précision utilisés dans les applications aérospatiales doivent être conçus pour un fonctionnement à grande vitesse et une fiabilité à long terme, garantissant un fonctionnement fluide des systèmes de propulsion, des trajectoires précises et une utilisation efficace de l’énergie. Après tout, les technologies spatiales sont confrontées à un ensemble de défis qui nécessitent des solutions d’ingénierie précises pour atteindre des performances optimales. Les températures dans l’espace fluctuent entre des températures extrêmement chaudes et extrêmement froides, provoquant la flexion, la fissuration ou la défaillance des matériaux, mettant ainsi en danger l’intégrité des systèmes vitaux.

READ  « Les serres ne fonctionneront probablement pas sur Mars »

De plus, le vide de l’espace contraste fortement avec les conditions sur Terre. Les composants doivent s’adapter à l’absence de pression atmosphérique, ce qui peut entraîner des problèmes tels que le dégazage et la dégradation des matériaux. Des roulements de précision conçus avec des tolérances serrées et des matériaux avancés capables de résister à des changements thermiques extrêmes sont nécessaires, offrant stabilité et fiabilité là où d’autres composants pourraient tomber en panne.

Les rayonnements posent un autre défi majeur. Les rayons cosmiques, les éruptions solaires et autres sources de rayonnement peuvent perturber les appareils électroniques délicats et mettre en danger les objectifs de la mission. Dans cet environnement dangereux, les roulements de précision jouent un rôle crucial dans la protection des équipements sensibles, en fournissant une protection contre les effets nocifs des rayonnements et en maintenant la fonctionnalité des systèmes critiques.

De plus, les exigences des systèmes de propulsion spatiale soulignent l’importance des roulements de précision. Qu’il s’agisse d’alimenter des propulseurs ioniques, des gouvernes de manœuvre ou des panneaux solaires rotatifs, les mécanismes de propulsion s’appuient sur des roulements pour transmettre le mouvement avec un minimum de friction et une efficacité maximale.

Sécurité à bord des vaisseaux spatiaux

Qu’ils soient utilisés dans des mécanismes de survie, des moteurs de propulsion ou des systèmes d’amarrage, la conception de roulements pour les applications spatiales présente un ensemble unique de défis. Les températures extrêmes, allant de la chaleur extrême au froid, mettent à l’épreuve la flexibilité des matériaux jusqu’à leurs limites. Les conditions de vide privent également du luxe du support aérien et nécessitent des composants capables de résister à l’emprise du vide.

READ  Regardez le soleil déclencher une éruption volcanique intense mais "magnifique" qui doit manquer à la terre

Les roulements destinés aux applications aérospatiales doivent idéalement adhérer à AS9102 Aéronautique et espace Article I Exigences de l’examenLe guide complet comprend les processus de fabrication d’une large gamme de pièces, des petits composants électriques aux grands assemblages structurels, qui sont tous vitaux dans les secteurs de l’aérospatiale et de la défense.

Dans le cadre de la norme AS9100, similaire au système de gestion de la qualité ISO 9001 mais conçue spécifiquement pour l’industrie aérospatiale, ces réglementations strictes imposent des exigences techniques strictes au roulement lui-même.

Portant

Pour les applications sous vide, les roulements ont… acier inoxydable Les anneaux, les billes et le diaphragme ont de faibles propriétés de dégazage. Ces roulements peuvent être associés à des lubrifiants aérospatiaux à très faible dégazage. Il n’est pas recommandé d’utiliser des joints en caoutchouc car ils contamineraient l’aspirateur.

Les revêtements au bisulfure de molybdène (MoS2) jouent également un rôle essentiel dans les performances et la longévité des roulements utilisés dans les applications aérospatiales. Dans le vide de l’espace, où les lubrifiants liquides s’évaporent ou se décomposent, le MoS2 agit comme un agent efficace Lubrifiant secRéduit considérablement la friction entre les surfaces de roulement, améliorant ainsi l’efficacité et les performances.

De plus, le MoS2 offre une excellente résistance à la corrosion, essentielle pour prolonger la durée de vie des roulements. Couramment appliqué sur les surfaces de roulement et utilisé pour lubrifier les systèmes mécaniques, le revêtement MoS2 garantit que les composants critiques restent fonctionnels et fiables tout au long de leur mission, ce qui les rend essentiels à la technologie spatiale.

Un autre revêtement sec fréquemment utilisé dans les applications aérospatiales est le bisulfure de tungstène (WS2) qui peut être appliqué sur les roulements par pulvérisation. Comme le MoS2, le WS2 réduit la friction de manière si significative que les roulements peuvent fonctionner à basse vitesse sans nécessiter de lubrification supplémentaire.

READ  La conduction thermique joue un rôle essentiel dans la dynamique des gouttelettes

Le PEEK est un matériau à faibles émissions souvent utilisé dans les applications sous vide, en particulier avec les roulements entièrement en céramique de nitrure de silicium. Le PEEK est connu pour sa résistance aux températures élevées, aux produits chimiques, aux huiles et aux carburants. Le PEEK est souvent utilisé dans les joints, les garnitures et autres composants où la résistance aux environnements difficiles est requise. Cela offre une durabilité et des performances améliorées, en particulier dans des conditions extrêmes, où les joints en caoutchouc peuvent se détériorer ou contaminer l’environnement du roulement.

Une autre option est Pleine céramique Roulements en nitrure de silicium. Ces roulements fonctionnent bien dans un environnement sous vide et peuvent fonctionner à basse vitesse sans lubrification, ce qui les rend idéaux pour les applications aérospatiales.

À mesure que l’humanité se rapproche de la colonisation de l’espace, l’importance de l’ingénierie de précision devient de plus en plus évidente. Les roulements de précision sont essentiels à la fiabilité et à la sécurité des systèmes des engins spatiaux, garantissant que les missions peuvent résister aux conditions difficiles de l’espace. Des systèmes de survie aux mécanismes de propulsion, ces roulements pourraient ouvrir la voie au prochain pas de géant de l’humanité.

Visitez le site Web de SMB Bearings pour plus d’informations sur leurs produits. Roulements de précision Pour les applications spatiales.

Demandez gratuitement des informations au fournisseur sur les produits mentionnés dans cet article

Connexion ou Inscription

Process and Control Today n’est pas responsable du contenu des articles et des images fournis ou produits en externe. Cliquez ici pour nous envoyer un e-mail concernant toute erreur ou omission dans cet article.

Continue Reading

Trending

Copyright © 2023