Connect with us

science

Des astronomes ont découvert la galaxie la plus éloignée de tous les temps

Published

on

Des astronomes ont découvert la galaxie la plus éloignée de tous les temps

Une équipe internationale d’astronomes a découvert l’objet astronomique le plus éloigné de tous les temps : la galaxie. Il ne brille qu’environ 300 millions d’années après le Big Bang, et il peut contenir les étoiles les plus anciennes de l’univers ou un trou noir supermassif. Les résultats de l’étude ont été publiés dans l’Astrophysical Journal.

L’équipe propose deux idées : HD1 pourrait former des étoiles à une vitesse étonnante et peut-être même abriter les étoiles de la Communauté III, les premières étoiles de l’univers — qui, jusqu’à présent, n’ont jamais été observées. Alternativement, HD1 peut contenir un trou noir supermassif avec une masse d’environ 100 millions de fois la masse de notre soleil. « Répondre aux questions sur la nature d’une source très éloignée peut être difficile », déclare Fabio Pascucci, auteur principal de l’étude MNRAS, co-auteur de l’article de découverte sur ApJ et astronome au Centre d’astrophysique.

« C’est comme deviner la nationalité d’un navire à partir du drapeau qu’il arbore, alors qu’il est loin sur le rivage, et que le navire est au milieu d’un brouillard épais et orageux. On peut peut-être voir certaines des couleurs et des formes de le drapeau, mais pas dans son intégralité. C’est finalement un long jeu d’analyse et d’exclusion de scénarios invraisemblables ». HD1 est extrêmement brillant dans la lumière ultraviolette. Pour l’expliquer, Pascucci dit : « Certains processus actifs se produisent là-bas ou, mieux encore, il y a quelques milliards d’années. »

Au début, les chercheurs ont émis l’hypothèse que HD1 est une galaxie avec un starburst standard, une galaxie qui crée des étoiles à un rythme élevé. Mais après avoir calculé le nombre d’étoiles que HD1 produisait, ils ont obtenu un « taux incroyable – HD1 formera plus de 100 étoiles chaque année. C’est au moins 10 fois plus élevé que ce à quoi nous nous attendrions pour ces galaxies ». C’est à ce moment-là que l’équipe a commencé à soupçonner que HD1 ne formait peut-être pas des stars régulières de tous les jours. « Le premier groupe d’étoiles qui s’est formé dans l’univers était beaucoup plus massif, plus brillant et plus chaud que les étoiles modernes », explique Pascucci. « Si nous supposons que les étoiles produites dans HD1 sont les premières étoiles du groupe III, alors leurs propriétés peuvent être expliquées plus facilement. En fait, les étoiles du troisième groupe sont capables de produire plus de lumière ultraviolette que les étoiles normales, ce qui peut expliquer la luminosité maximale au-dessus de Violet pour HD1.

READ  Une vidéo virale de la lune se levant au pôle Nord est générée par ordinateur

Cependant, un trou noir supermassif pourrait également expliquer l’intense luminosité de HD1. Lorsqu’il dévore d’énormes quantités de gaz, des photons de haute énergie peuvent être émis depuis la région autour du trou noir. Si tel est le cas, ce serait de loin le plus ancien trou noir supermassif connu de l’humanité, qui a été observé beaucoup plus près du Big Bang que le détenteur actuel du record.

« HD1 représente un bébé géant en salle d’accouchement dans l’univers primitif », explique Avi Loeb, astrophysicien au Centre d’astrophysique et co-auteur de l’étude MNRAS. « Il brise de près de deux fois le décalage vers le rouge le plus élevé enregistré du quasar, ce qui est un exploit impressionnant. » HD1 a été découvert après plus de 1 200 heures d’observation à l’aide du télescope Subaru, du télescope Vesta, du télescope infrarouge britannique et du télescope spatial Spitzer.

« Il a été très difficile de trouver HD1 parmi plus de 700 000 objets », explique Yuichi Harikan, l’astronome de l’Université de Tokyo qui a découvert la galaxie. « La couleur rouge de HD1 correspond étonnamment aux caractéristiques attendues d’une galaxie à 13,5 milliards d’années-lumière, ce qui m’a donné la chair de poule quand je l’ai trouvée. » L’équipe a ensuite effectué des observations de suivi à l’aide de l’Atacama Large Millimeter/Submillimeter Array (ALMA) pour confirmer la distance, qui est supérieure de 100 millions d’années-lumière à GN-z11, l’actuel détenteur du record de la galaxie la plus éloignée.

À l’aide du télescope spatial James Webb, l’équipe de recherche surveillera bientôt à nouveau HD1 pour vérifier sa distance par rapport à la Terre. Si les calculs actuels s’avèrent corrects, HD1 sera la galaxie la plus éloignée et la plus ancienne jamais enregistrée. Les mêmes observations permettront à l’équipe d’approfondir l’identité de HD1 et de confirmer si l’une de leurs théories est correcte.

READ  Les sursauts gamma pourraient aider les astronomes à mesurer de vastes distances à travers l'univers

« Formulé quelques centaines de millions d’années après le Big Bang, le trou noir de HD1 a dû se développer à partir d’une graine massive à un rythme sans précédent », explique Loeb. « Encore une fois, la nature semble plus créative que nous. » (Ani)

(Cette histoire n’a pas été modifiée par l’équipe de Devdiscourse et est automatiquement générée à partir d’un flux partagé.)

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Published

on

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Les chercheurs suggèrent que le Tyrannosaurus rex était peut-être 70 % plus lourd qu’on ne le pensait auparavant et 25 % plus long.

Le plus grand T. rex jamais trouvé vivant pourrait être beaucoup plus grand que le plus grand spécimen actuellement connu, puisqu’il pèse environ 15 tonnes au lieu de 8,8 tonnes et mesure 15 mètres de long au lieu de 12 mètres, selon l’étude.

De nombreux dinosaures plus grands appartenant à divers groupes ont été identifiés à partir d’un seul bon spécimen fossile.

Il est donc impossible de savoir si cet animal est un grand ou un petit exemplaire de cette espèce.

Les chercheurs soulignent que déterminer quel dinosaure était le plus grand, sur la base d’une poignée de fossiles, n’a pas beaucoup de sens.

Dans la nouvelle étude, le Dr Jordan Malone du Musée canadien de la nature à Ottawa, au Canada, et le Dr David Hone de l’Université Queen Mary de Londres, ont utilisé la modélisation informatique pour évaluer un groupe de dinosaures T. rex.

Ils ont pris en compte des facteurs tels que la taille de la population, le taux de croissance, la durée de vie moyenne et le caractère incomplet des archives fossiles.

« Notre étude suggère que pour les grands animaux fossiles tels que le T. rex, nous n’avons aucune idée, d’après les archives fossiles, de la taille absolue qu’ils ont pu atteindre », a déclaré le Dr Malone.

« C’est amusant de penser à un T. rex de 15 tonnes, mais les implications sont également intéressantes d’un point de vue biomécanique ou écologique. »

READ  Les sursauts gamma pourraient aider les astronomes à mesurer de vastes distances à travers l'univers

Le Dr Hohn a déclaré : « Il est important de souligner qu’il ne s’agit pas vraiment du T. rex, qui constitue la base de notre étude, mais que cette question s’applique à tous les dinosaures et à de nombreuses autres espèces fossiles.

« Se disputer sur « qu’est-ce qui est le plus gros ? » en se basant sur quelques squelettes n’a pas vraiment de sens. »

Le T. rex a été choisi pour le modèle car bon nombre de ses détails étaient déjà bien appréciés.

Le modèle est basé sur des modèles de crocodiles vivants, choisis en raison de leur grande taille et de leur relation étroite avec les dinosaures.

Les chercheurs ont découvert que les plus grands fossiles connus de T. rex se situent probablement dans le 99e centile, soit le 1 pour cent supérieur de la taille du corps.

Cependant, ils soulignent que pour trouver un animal parmi les 99,99 pour cent (un tyrannosaure sur dix mille), les scientifiques devraient fouiller des fossiles au rythme actuel pendant encore 1 000 ans.

Les estimations de taille sont basées sur un modèle, mais la découverte de géants d’espèces modernes suggère qu’il devait encore y avoir des dinosaures plus grands.

« Certains des os et morceaux isolés indiquent clairement des individus plus gros que les squelettes dont nous disposons actuellement », a déclaré le Dr Hoon.

Les résultats ont été publiés dans la revue Ecology and Evolution.

Continue Reading

science

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Published

on

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Un scientifique du Lawrence Berkeley National Laboratory travaille sur un dispositif de séparation lors d’une expérience. Crédit image : Laboratoire national Lawrence Berkeley

Une équipe de scientifiques et de chercheurs du Lawrence Berkeley National Laboratory en Californie a récemment annoncé une réalisation révolutionnaire : la création du Livemorium, ou élément 116, à l’aide d’un faisceau de particules de titane.

C’est la première fois qu’un hépatique est fabriqué de cette manière, rapprochant les chercheurs de l’insaisissable « îlot de stabilité », où les éléments très lourds sont censés avoir une durée de vie plus longue, ce qui les rend plus faciles à étudier. Plus important encore, c’est la première fois qu’un objet extrêmement lourd est fabriqué de cette manière par des humains.

Rainer Kröcken, directeur des sciences nucléaires au Berkeley Lab, a exprimé son optimisme quant à la découverte, soulignant la nature collaborative de l’expérience. Il a déclaré que la production de l’élément 120, la prochaine cible, prendrait beaucoup plus de temps mais semblait désormais possible. Annoncé lors de la conférence Nuclear Structure 2024, l’article sera bientôt disponible sur le référentiel de prépublications arXiv et sera soumis à la revue Physical Review Letters.

Utilisation innovante d’une poutre en titane pour créer l’élément 116
Dans leur expérience, les scientifiques ont utilisé un faisceau de titane-50, un isotope spécifique, pour générer du Livemorium, ce qui en fait l’élément le plus lourd créé à ce jour au laboratoire de Berkeley. Ce laboratoire a une riche histoire de découverte d’éléments, qui a contribué à l’identification de 16 éléments allant du technétium (43) au seaborgium (106).

READ  Les vaisseaux spatiaux en orbite solaire de la NASA et de l'ESA prennent de superbes clichés de Vénus en survol [WATCH]

Jacqueline Gates, qui a dirigé le dernier effort, a exprimé sa confiance dans les résultats, notant que les chances que les résultats soient une anomalie statistique sont très faibles. Le processus impliquait de chauffer le titane à environ 3 000 °F (1 649 °C) jusqu’à ce qu’il se vaporise. L’équipe a ensuite bombardé le titane vaporisé avec des micro-ondes, en enlevant 22 électrons et en préparant les ions pour l’accélération dans un cyclotron de 88 pouces au laboratoire de Berkeley.

Les ions de titane accélérés sont dirigés vers une cible de plutonium, des milliards d’ions frappant la cible chaque seconde. Ce bombardement intense a finalement créé deux atomes de Livermorium sur une période de 22 jours. L’utilisation du titane à cette fin représente une nouvelle technologie pour synthétiser des éléments plus lourds, car les éléments précédents de cette gamme, de 114 à 118, avaient été synthétisés à l’aide d’un faisceau de calcium 48.

Jennifer Burr, physicienne nucléaire au groupe des éléments lourds du Berkeley Lab, a souligné l’importance de cette méthode. La production de l’élément 116 à partir de titane valide cette nouvelle approche, ouvrant la voie à de futures expériences visant à produire des éléments plus lourds, comme l’élément 120.

Trouver l’article 120
Le succès de la création de l’élément 116 a ouvert la voie au prochain objectif ambitieux de l’équipe : créer l’élément 120. S’il est atteint, l’élément 120 sera l’atome le plus lourd jamais créé et fera partie de « l’îlot de stabilité », un groupe théorique d’éléments super-lourds de qui devrait être plus long que ceux découverts jusqu’à présent.

READ  Les sursauts gamma pourraient aider les astronomes à mesurer de vastes distances à travers l'univers

Le laboratoire prévoit de commencer à tenter de créer l’élément 120 en 2025. Le processus devrait prendre plusieurs années, reflétant la complexité et les défis inhérents à cette recherche de pointe. Les physiciens explorent les limites du tableau périodique, s’efforçant de repousser les limites de la connaissance et de la compréhension humaines en explorant les limites de la stabilité atomique.

Cette réalisation majeure démontre non seulement la créativité des scientifiques du Berkeley Lab, mais ouvre également la voie à de futures découvertes dans le domaine des éléments super-lourds, qui pourraient ouvrir la voie à de nouvelles connaissances sur la nature fondamentale de la matière.

Retrouvez-nous sur YouTube

Participer

Continue Reading

science

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

Published

on

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

La directrice de l’Institut des sciences spatiales et cosmiques, la Dre Jennifer Lutz, a accepté la recommandation principale du groupe de travail sur les initiatives exoplanétaires stratégiques et a décidé de procéder à une étude à grande échelle des exoplanètes naines rocheuses de type M.

Le programme utilisera environ 500 heures du temps discrétionnaire du directeur sur le télescope spatial James Webb pour rechercher l’atmosphère de plus d’une douzaine de systèmes proches.

Près de 250 observations ultraviolettes en orbite avec le télescope spatial Hubble seront utilisées pour déterminer l’activité des étoiles hôtes. Les observations seront effectuées par une équipe de direction du Space Science Institute dirigée par le Dr Nestor Espinosa et soutenue par le Dr Hannah Diamond Lowe en tant qu’équipe adjointe.

L’Institut des sciences spatiales et cosmiques emploie également un comité consultatif scientifique externe pour donner des conseils sur tous les aspects du programme, y compris la sélection des cibles, la vérification des données et les interactions communautaires équitables. Les membres du comité consultatif scientifique seront représentatifs de la communauté exoplanétaire au sens large, couvrant un large éventail d’affiliations institutionnelles et d’étapes de carrière.

Le Space Science Institute annoncera bientôt la possibilité de soumettre des candidatures, y compris des auto-nominations. La contribution de la communauté sera sollicitée sur la liste des cibles ; Les plans d’observation seront publiés bien avant la date limite de GWebb IV.

Rapport du groupe de travail sur les initiatives exoplanétaires stratégiques avec le télescope spatial Hubble et le télescope spatial James Webb

READ  Les vaisseaux spatiaux en orbite solaire de la NASA et de l'ESA prennent de superbes clichés de Vénus en survol [WATCH]

Astrobiologie

Membre de l’Explorers Club, ancien gestionnaire de charge utile de la Station spatiale de la NASA/biologiste spatial, homme de plein air, journaliste, ancien grimpeur, synesthésie, mélange de Na’vi, Jedi, Freeman et bouddhiste, langue des signes américaine, camp de base de l’île Devon et vétéran de l’Everest, (il /lui) 🖖🏻

Continue Reading

Trending

Copyright © 2023