Connect with us

science

Discovery dévoile comment les vibrations atomiques émergent

Published

on

Cent ans de physique nous apprennent que les vibrations atomiques collectives, appelées phonons, peuvent se comporter comme des particules ou des ondes. Lorsqu’ils heurtent une interface entre deux matériaux, ils peuvent rebondir comme une balle de tennis. Si les matériaux sont minces et répétitifs, comme dans un super-réseau, les phonons peuvent sauter entre des matériaux successifs.

Il existe maintenant une preuve expérimentale définitive qu’à l’échelle nanométrique, la notion de multiples matériaux minces avec des vibrations distinctes ne tient plus. Si les matériaux sont minces, leurs atomes s’arrangent à l’identique, de sorte que leurs vibrations sont similaires et présentes partout. Une telle cohérence structurelle et vibratoire ouvre de nouvelles voies dans la conception des matériaux, ce qui conduira à des dispositifs plus économes en énergie et à faible consommation d’énergie, à de nouvelles solutions matérielles pour recycler et convertir la chaleur résiduelle en électricité, et à de nouvelles façons de manipuler la lumière avec la chaleur pour l’informatique avancée. Communication sans fil 6G.

La découverte a émergé d’une collaboration à long terme de scientifiques et d’ingénieurs de sept universités et de deux laboratoires nationaux du Département américain de l’énergie. Leur article, Emergent Interface Vibrational Structure of Oxide Superlattices, a été publié le 26 janvier dans Nature.

Eric Hoglund, chercheur postdoctoral à l’École d’ingénierie et de sciences appliquées de l’Université de Virginie, a pris un point pour l’équipe. Il a obtenu son doctorat. en science et génie des matériaux de l’UVA en mai 2020 en collaboration avec James M. Howe, Thomas Goodwin Digges Professeur de science et génie des matériaux. Après l’obtention de son diplôme, Hoglund a continué à travailler comme chercheur postdoctoral avec le soutien de Howe et Patrick Hopkinsprofesseur Whitney Stone et professeur de génie mécanique et aérospatial.

Le succès de Hoglund illustre le but et le potentiel des UVA Initiative d’intégration des matériaux multifonctionnelsqui encourage une collaboration étroite entre différents chercheurs de différentes disciplines pour étudier les performances des matériaux, des atomes aux applications.

« La capacité de visualiser les vibrations atomiques et de les lier aux propriétés fonctionnelles et aux nouveaux concepts d’appareils, rendue possible par la collaboration et le co-conseil en science des matériaux et en génie mécanique, fait progresser la mission de MMI », a déclaré Hopkins.

Hoglund a utilisé des techniques de microscopie pour répondre aux questions soulevées dans les résultats expérimentaux que Hopkins a publiés en 2013, rendant compte de la conductivité thermique des super-réseaux, que Hoglund compare à un bloc de construction Lego.

« Vous pouvez obtenir les propriétés de matériau souhaitées en modifiant la manière dont différents oxydes se couplent, le nombre de couches d’oxydes et l’épaisseur de chaque couche », a déclaré Hoglund.

Hopkins s’attendait à ce que le phonon obtienne une résistance lorsqu’il traversait le réseau en treillis, dissipant l’énergie thermique à chaque interface des couches d’oxyde. Au lieu de cela, la conductivité thermique a augmenté lorsque les interfaces étaient très proches les unes des autres.

« Cela nous a amenés à croire que les phonons peuvent former une onde qui existe dans tous les matériaux ultérieurs, également connue sous le nom d’effet cohérent », a déclaré Hopkins. « Nous avons trouvé une explication qui correspondait aux mesures de conductivité, mais nous avons toujours pensé que ce travail était incomplet. »

« Il s’avère que lorsque les interfaces deviennent très proches, les arrangements atomiques uniques à la couche de matériau cessent d’exister », a déclaré Hoglund. « Les positions des atomes aux interfaces et leurs vibrations existent partout. Cela explique pourquoi les interfaces espacées à l’échelle nanométrique produisent des propriétés uniques, différentes d’un mélange linéaire des matériaux adjacents.

Hoglund a collaboré avec Jordan Hachtel, un associé R&D au Center for Nanophase Materials Sciences du Oak Ridge National Laboratory, pour connecter la structure atomique locale aux vibrations à l’aide de nouvelles générations de microscopes électroniques à UVA et Oak Ridge. En travaillant avec des données spectroscopiques à haute résolution spatiale, ils ont cartographié les vibrations intercouches à travers les interfaces dans un super-réseau.

« C’est l’avancée majeure du journal Nature », a déclaré Hopkins. « Nous pouvons voir la position des atomes et leurs vibrations, cette belle image d’une onde de phonons basée sur un certain modèle ou type de structure atomique. »

La marche collaborative vers le succès collectif

L’effort hautement collaboratif a commencé en 2018 lorsque Hoglund partageait des plans de recherche pour caractériser les vibrations atomiques aux interfaces dans les oxydes de pérovskite.

« J’allais à Oak Ridge pour travailler avec Jordan pendant une semaine, alors Jim et Patrick m’ont suggéré de prendre les échantillons de super-réseaux et de voir ce que nous pouvons voir », se souvient Hoglund. « Les expériences que Jordan et moi avons faites à Oak Ridge ont renforcé notre confiance dans l’utilisation de super-réseaux pour mesurer les vibrations à l’échelle atomique ou nanométrique. »

Au cours de l’un de ses derniers voyages au Tennessee, Hoglund rencontra Joseph R. Matson, titulaire d’un doctorat. expériences liées aux étudiants au laboratoire Nanophotonic Materials and Devices de l’Université Vanderbilt dirigé par Joshua D. Caldwell, membre de la faculté du chancelier de la famille Flowers et professeur agrégé de génie mécanique et de génie électrique. À l’aide des instruments de Vanderbilt, ils ont mené des expériences de spectroscopie infrarouge à transformée de Fourier pour sonder les vibrations optiques dans l’ensemble du super-réseau. Ces mesures macroscopiques bien établies ont validé la nouvelle approche de microscopie de Hoglund.

De ces expériences, Hoglund a déduit que les propriétés qui l’intéressaient – le transport thermique et la réponse infrarouge – découlaient de l’influence de l’interface sur le cadre bien ordonné d’atomes d’oxygène du super-réseau. Les atomes d’oxygène s’arrangent dans une structure à huit côtés appelée octaèdres, avec un atome de métal suspendu à l’intérieur. L’interaction entre les atomes d’oxygène et de métal provoque la rotation des octaèdres à travers la structure du matériau. Les arrangements d’oxygène et de métal dans ce cadre génèrent des vibrations uniques et donnent naissance aux propriétés thermiques et spectrales du matériau.

De retour à l’UVA, la conversation fortuite de Hoglund avec Jon Ihlefeld, professeur agrégé de science et génie des matériaux et de génie électrique et informatique, a apporté des membres et une expertise supplémentaires à l’effort. Ihlefeld a mentionné que des chercheurs affiliés aux Sandia National Laboratories, Thomas Beechem, professeur agrégé de génie mécanique à l’Université Purdue, et Zachary T. Piontkowski, un membre senior du personnel technique de Sandia, essayaient également d’expliquer le comportement optique des phonons et avaient également trouvé exactement les mêmes super-réseaux d’oxydes comme matériau idéal pour leur étude.

Par coïncidence, Hopkins avait une collaboration de recherche en cours avec Beechem, mais avec d’autres systèmes de matériaux. « Plutôt que de rivaliser, nous avons convenu de travailler ensemble et de faire quelque chose de plus grand que l’un de nous », a déclaré Hoglund.

L’implication de Beechem a eu un avantage supplémentaire, amenant le physicien et scientifique des matériaux de Penn State Roman Engel-Herbert et son étudiant Ryan C. Haisimaier dans le partenariat pour développer des échantillons de matériaux pour les expériences de microscopie en cours à UVA, Oak Ridge et Vanderbilt. Jusqu’à présent, Ramamoorthy Ramesh, Université de Californie, Berkeley, professeur de physique et de science et génie des matériaux, et son doctorat. les étudiants Ajay K. Yadav et Jayakanth Ravichandran étaient les producteurs de l’équipe, fournissant des échantillons au groupe de recherche ExSiTE de Hopkins.

« Nous avons réalisé que nous avions toutes ces données expérimentales vraiment intéressantes reliant les vibrations aux échelles de longueur atomique et macroscopique, mais toutes nos explications étaient encore quelque peu des conjectures que nous ne pouvions pas prouver absolument sans théorie », a déclaré Hoglund.

Hachtel a contacté un collègue de Vanderbilt, Sokrates T. Pantelides, professeur émérite universitaire de physique et d’ingénierie, professeur de physique William A. & Nancy F. McMinn et professeur de génie électrique. Pantelides et les membres de son groupe de recherche De-Liang Bao et Andrew O’Hara ont utilisé la théorie fonctionnelle de la densité pour simuler les vibrations atomiques dans un matériau virtuel avec une structure de super-réseau.

Leurs méthodes théoriques et informatiques ont soutenu exactement les résultats produits par Hoglund et d’autres expérimentateurs de l’équipe. La simulation a également permis aux expérimentateurs de comprendre comment chaque atome du super-réseau vibre avec une grande précision et comment cela est lié à la structure.

À ce stade, l’équipe comptait 17 auteurs : trois microscopistes, quatre spectroscopistes optiques, trois informaticiens, cinq producteurs et deux spécialistes des matériaux. Il était temps, pensaient-ils, de partager leurs découvertes avec l’ensemble de la communauté scientifique.

Un premier examinateur de leur manuscrit a conseillé à l’équipe d’établir un lien causal plus direct entre la structure matérielle et les propriétés matérielles. « Nous avons mesuré de nouveaux phénomènes intéressants établissant des connexions sur plusieurs échelles de longueur qui devrait affectent les propriétés des matériaux, mais nous n’avions pas encore démontré de manière convaincante si et comment les propriétés connues changeaient », a déclaré Hoglund.

Deux étudiants diplômés à Hopkins’ EXSITE laboratoire, scientifique principal John Tomko et Ph.D. l’étudiante Sara Makarem, a aidé à fournir la preuve finale. Tomko et Makarem ont sondé les super-réseaux à l’aide de lasers infrarouges et ont démontré que la structure contrôlait les propriétés optiques non linéaires et la durée de vie des phonons.

« Lorsque vous envoyez un photon d’une unité d’énergie, les super-réseaux doublent cette unité d’énergie », a déclaré Hopkins. « John et Sara ont construit une nouvelle capacité dans notre laboratoire pour mesurer cet effet, que nous exprimons comme l’efficacité de génération de deuxième harmonique de ces super-réseaux. » Leur contribution élargit les capacités du laboratoire ExSiTE pour comprendre les nouvelles interactions lumière-phonon.

« Je pense que cela permettra la découverte de matériaux avancés », a déclaré Hopkins. « Les scientifiques et les ingénieurs travaillant avec d’autres classes de matériaux peuvent désormais rechercher des propriétés similaires dans leurs propres études. Je m’attends à ce que nous découvrions que ces ondes de phonons, cet effet cohérent, existent dans de nombreux autres matériaux.

La collaboration de longue date se poursuit. Hoglund en est à sa deuxième année en tant que chercheur postdoctoral, travaillant à la fois avec Howe et Hopkins. Avec Pantelides, Hachtel et Ramesh, il s’attend à ce qu’ils aient de nouvelles idées passionnantes sur la structure atomique à partager dans un proche avenir.


Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le chef de l’Agence spatiale américaine veut parler avec la Chine des débris spatiaux

Published

on

29 août 2024

Le chef du commandement spatial américain espère que la prochaine fois que la Chine lancera un missile laissant derrière elle des débris spatiaux de longue durée, Pékin avertira Washington à l’avance, plutôt que de laisser les États-Unis découvrir par eux-mêmes le chaos orbital.

Parlez dans L’efficacité du Mitchell Institute for Aerospace Studies Lors d’une réunion à la base spatiale Peterson, au Colorado, le 28 août, le général Stephen N. Whiting a souligné deux incidents récents impliquant des débris spatiaux chinois comme étant une source de préoccupation et la nécessité d’améliorer la communication à l’avenir.

« Nous venons de voir le lancement de leur version de Constellation du soleil « Cela a laissé plus de 300 débris en orbite – une fusée Longue Marche 6A », a déclaré Whiting. « Il y a moins de deux ans, ils avaient une autre fusée, qui a mis plus de 500 débris à longue durée de vie… J’espère que la prochaine fois. que « Dans un missile comme celui-ci, il laisse beaucoup de débris. Ce ne sont pas nos capteurs qui détectent cela en premier, mais nous obtenons des communications qui nous aident à comprendre cela, tout comme nous communiquons avec les autres. »

L’incident le plus récent impliquant une fusée Longue Marche 6A s’est produit au début du mois, lorsque le lanceur transportait les 18 premiers satellites d’une constellation de communications prévue pour rivaliser avec Starlink. La fusée s’est brisée en orbite terrestre basse (LEO) quelques jours plus tard, répandant des débris et suscitant des inquiétudes parmi les experts. La société privée de suivi spatial a rapporté que la désintégration pourrait produire plus de 10… 900 épaves shrapnel.

Missile Longue Marche 6 modifié. Image de la China Aerospace Science and Technology Corporation

Whiting a noté que les débris provenaient de l’étage supérieur de la fusée après le lancement des satellites, indiquant que la mission était « généralement réussie ». Cependant, à des altitudes plus élevées, les débris resteront en orbite plus longtemps.

« Nous ne voulons certainement pas voir ce genre de débris », a ajouté Whiting.

Les débris se trouvent généralement sur des orbites inférieures à 600 km (373 miles). Il revient sur Terre après quelques annéesÀ une altitude de 800 km, sa décomposition peut prendre des siècles. Avec de plus en plus de satellites en orbite terrestre basse et des débris persistants provenant de lancements peu judicieux, La probabilité de collisions continue d’augmenter.

Selon le général à la retraite Kevin Shelton, directeur du Centre d’excellence sur l’énergie spatiale du Mitchell Institute, les États-Unis ont déjà eu des problèmes similaires avec des débris à haute altitude, mais ont commencé à évacuer le carburant et les gaz des étages de fusée avant d’entrer en orbite. Cette pratique réduisait les débris et le risque de désintégration, et la Russie l’adopta peu après. Whiting a déclaré qu’on ne savait pas actuellement si la Chine utilisait cette méthode.

« Depuis des décennies, les États-Unis s’intéressent tellement à l’espace que nous avons mis la grande majorité de nos données de suivi à la disposition du monde entier », a déclaré Whiting. « Chaque jour, nous analysons tous les satellites actifs à la recherche de tous ces débris, et nous en informons tout le monde, y compris les Chinois et les Russes… parce que nous ne voulons pas que les satellites heurtent des débris et laissent derrière eux d’autres débris. »

Le développement rapide des capacités spatiales et l’augmentation significative des déploiements de satellites par la Chine et la Russie restent une préoccupation majeure quant à la manière dont les États-Unis abordent le domaine spatial. Chef adjoint des opérations spatiales, le général Michael A. Gotlin a souligné que les récentes mesures prises par ces pays prouvent leur intention d’opérer de manière dangereuse dans ce domaine.

« Ils créent beaucoup de débris et d’orbites que nous devons contourner, ou ils mettent en danger des choses comme la Station spatiale internationale », a déclaré Gotlin lors du Sommet AFCEA/INSA sur le renseignement et la sécurité nationale à Rockville, Maryland, le 28 août. Il a ajouté : « Ils ne se soucient même pas de la sécurité des astronautes. Si ce n’est pas dangereux et non professionnel, je ne sais pas ce que c’est. »

En novembre 2021, la Russie a procédé à un test de missile antisatellite, aboutissant à la création d’un Grande quantité de débris En orbite terrestre basse, ce qui présente un danger pour la Station spatiale internationale et incite l’équipage à prendre des mesures de précaution. En outre, Moscou a également été témoin Une série de fuites de liquide de refroidissement Ces dernières années, la Chine a lancé son propre vaisseau spatial. Même s’il n’y a pas de négociations prévues avec la Russie sur le développement spatial, les espoirs sont grands d’une communication plus active avec Pékin sur les alertes spatiales.

« Nous donnons ces avis aux Chinois, et au cours de l’année dernière, nous avons vu à plusieurs reprises qu’ils nous ont donné quelques avis en retour, et je pense que c’est une chose positive. Nous n’avons aucune discussion. prévu avec la Russie », a déclaré Whiting.

Continue Reading

science

À la recherche de pierres précieuses : caractérisation de six planètes géantes en orbite autour de naines froides

Published

on

À la recherche de pierres précieuses : caractérisation de six planètes géantes en orbite autour de naines froides

Données d’imagerie à contraste élevé pour toutes les cibles. Dans chaque panneau, nous montrons la limite de contraste de 5σ atteinte en fonction de la séparation angulaire de l’étoile hôte pour chaque ensemble de données à contraste élevé. Nous traçons également des cachets postaux de 1,4″ × 1,4″ d’images NESSI reconstruites en bande z (encadré à droite dans chaque panneau) pour toutes les cibles et des images AO (encarts à gauche) pour TOI-5414, TOI-5616, TOI-5634A et TOI-6034. — astro-ph.EP

Les exoplanètes géantes transitant autour d’étoiles naines de type M (GEMS) sont rares, en raison de la faible masse de leurs étoiles hôtes. Cependant, la couverture de l’ensemble du ciel par TESS a permis d’en détecter un nombre croissant pour permettre des enquêtes statistiques telles que le GEMS Search Survey.

Dans le cadre de cet effort, nous décrivons les observations de six planètes géantes en transit, qui incluent des mesures de masse précises pour deux GEMS (K2-419Ab, TOI-6034b) et une validation statistique de quatre systèmes, qui incluent une vérification et des limites de masse supérieures pour trois d’entre elles. (TOI-5218b, TOI-6034b). 5616b, TOI-5634Ab), tandis que le quatrième système – TOI-5414b – est classé comme « planète potentielle ».

Nos observations incluent les vitesses radiales du Habitable Zone Planet Finder sur le télescope Hobby-Eberly et de l’observatoire Maroon-X sur Gemini-North, ainsi que la photométrie et l’imagerie à contraste élevé provenant de plusieurs installations au sol. En plus de la photométrie TESS, K2-419Ab a également été observé et validé statistiquement dans le cadre de la mission K2 au cours des campagnes 5 et 18, qui fournit des contraintes orbitales et planétaires précises malgré la faible luminosité de l’étoile hôte et la longue période orbitale d’environ 20,4 jours.

Avec une température d’équilibre de seulement 380 K, K2-419Ab est l’une des planètes en transit les plus froides et les mieux caractérisées connues. TOI-6034 a un compagnon tardif de type F à environ 40 secondes d’arc, ce qui en fait la première étoile hôte GEMS à avoir un ancien compagnon binaire sur la séquence principale. Ces confirmations s’ajoutent au petit échantillon existant de planètes en transit GEMS confirmées.

Shubham Kanodia, Arvind F. Gupta, Caleb I. Canas, Lea Marta Bernabo, Varghese Reggie, T. Hahn, Madison Brady, Andreas Seyfart, William D. Cochrane, Nydia Morrell, Ritvik Basant, Jacob Bean et Chad F. Bender, Zoé L. De Bors, Alison Perella, Alexina Birkholz, Nina Brown, Franklin Chapman, David R. Ciardi, Catherine A. Clark, Ethan J. Cotter, Scott A. Diddams, Samuel Halverson, Susan Hawley, Leslie Hebb, Ray Holcomb, Steve B. Howell, Henry A. Kobolnicki, Adam F. Kowalski, Alexander Larsen, Jessica Libby Roberts, Andrea S. J. Lin, Michael B. Lund, Raphael Locke, Andrew Munson, Joe B. Ninan, Brooke A. Parker, Nishka Patel, Michael Rudrak, Gabrielle Ross, Arpita Roy, Christian Schwab, Jomundur Stefansson, Aubrey Thoms, Andrew Vanderberg

Commentaires : Accepté dans AJ
Sujets : Astrophysique terrestre et planétaire (astro-ph.EP)
Citer ce qui suit : arXiv:2408.14694 [astro-ph.EP] (ou arXiv :2408.14694v1 [astro-ph.EP] (pour cette version)
https://doi.org/10.48550/arXiv.2408.14694
Concentrez-vous pour en savoir plus
Date de publication
De : Shubham Kanodia
[v1] Lundi 26 août 2024, 23:47:24 UTC (5 169 Ko)
https://arxiv.org/abs/2408.14694

Astrobiologie

Continue Reading

science

La Federal Aviation Administration des États-Unis a immobilisé les fusées Falcon 9 de SpaceX dans l’attente d’une enquête sur un rare accident d’atterrissage au large des côtes.

Published

on

La Federal Aviation Administration a immobilisé les fusées Falcon 9 de SpaceX en attendant une enquête visant à déterminer pourquoi le propulseur du premier étage s’est arrêté. Collision avec un bateau de débarquement tôt mercredi après avoir contribué au lancement d’un autre lot de satellites Internet Starlink.

après Se lever Après avoir reporté mardi soir le lancement du vaisseau spatial avec équipage Polaris Dawn en raison de prévisions météorologiques à long terme défavorables, SpaceX a continué à travailler sur le premier des lancements consécutifs de satellites Starlink, un depuis la Floride et un depuis la Californie.

Mais le deuxième vol a été annulé après que le premier étage utilisé lors du lancement en Floride s’est brisé et est tombé dans l’océan Atlantique alors qu’il tentait d’atterrir sur un drone SpaceX stationné à des centaines de kilomètres au nord-est de Cap Canaveral.

Une image à exposition temporelle capture la trajectoire enflammée d'une fusée Falcon 9 alors qu'elle s'éloigne de la station spatiale de Cap Canaveral tôt mercredi pour un vol visant à déployer 21 satellites Internet Starlink.
Une image à exposition temporelle montre la trajectoire enflammée d’une fusée Falcon 9 alors qu’elle s’éloignait de la station spatiale de Cap Canaveral tôt mercredi pour un vol visant à déployer 21 satellites Internet Starlink. Cette photo a été prise depuis le Pad 39A du Kennedy Space Center voisin, où la mission Polaris Dawn attend son lancement sur un vol commercial comportant la première sortie dans l’espace non gouvernementale. Ce vol est désormais suspendu dans l’attente d’une enquête sur les raisons pour lesquelles le premier étage d’une fusée Starlink s’est brisé lors de l’atterrissage sur un drone SpaceX au large des côtes.

EspaceX


La FAA a déclaré qu’elle ordonnerait une enquête, immobilisant efficacement les fusées Falcon 9 de SpaceX – y compris la fusée Polaris Dawn – jusqu’à ce que l’enquête soit terminée et que les mesures correctives soient approuvées.

« Le retour en vol de la fusée Falcon 9 dépend de la détermination par la FAA que tout système, processus ou procédure lié à l’anomalie n’a pas d’impact sur la sécurité publique », a déclaré la FAA dans un communiqué.

« En outre, SpaceX devra peut-être demander et obtenir l’approbation de la FAA pour modifier sa licence qui inclut des actions correctives et satisfaire à toutes les autres exigences de licence », a ajouté l’agence.

Mardi soir, SpaceX a reporté un lancement prévu mercredi Mission Aube PolarisLe lancement d’un vol commercial comprenant la première sortie dans l’espace par une organisation non gouvernementale a été reporté à vendredi au plus tôt en raison des conditions météorologiques attendues à la fin de la mission. Le lancement a été suspendu indéfiniment dans l’attente d’une enquête sur l’accident à l’atterrissage.

L’échec de l’atterrissage a mis fin à une séquence de 267 récupérations consécutives réussies de boosters remontant à février 2021. Cependant, le deuxième étage de la fusée Falcon 9 a réussi à transporter 21 satellites Starlink sur leur orbite prévue.

L’atterrissage du premier étage semblait normal jusqu’au moment de l’atterrissage, lorsque plus de flammes que d’habitude sont apparues autour de la base de la fusée à l’approche du pont de la fusée. L’une des jambes d’atterrissage s’est effondrée immédiatement après l’atterrissage et la fusée d’appoint, masquée par le feu et la fumée, s’est renversée par-dessus le côté de la péniche de débarquement dans l’océan Atlantique.

Une caméra montée sur le premier étage d'une fusée Falcon 9 a capturé une vue du drone
Une caméra montée sur le premier étage d’une fusée Falcon 9 a capturé une vue du « manque de gravité » du drone quelques instants avant l’atterrissage. Une caméra sur le drone montre le pont d’atterrissage éclairé par les gaz d’échappement de la fusée alors qu’elle s’approche du navire.

EspaceX


Au moment de l'atterrissage, un incendie s'est déclaré et l'une des jambes d'atterrissage s'est effondrée.
Au moment de l’atterrissage, un incendie s’est déclaré et l’une des jambes d’atterrissage s’est effondrée.

EspaceX


Le missile est ensuite tombé dans l'océan Atlantique.
Le missile est ensuite tombé dans l’océan Atlantique.

EspaceX


« Après une ascension réussie, le premier étage d’une fusée Falcon 9 s’est retourné après son atterrissage sur le vaisseau spatial sans pilote ‘Zero Gravity' », SpaceX Il a dit sur les réseaux sociaux« Les équipes évaluent les données de vol et l’état du missile. »

Il s’agissait du 23e premier étage de la fusée B1062, qui s’est avéré être son dernier lancement et atterrissage, un nouveau record de réutilisabilité. SpaceX autorise les premiers étages de la fusée Falcon 9 pour un maximum de 40 vols par étage.

Peu de temps après le déploiement des satellites Starlink en Floride, la société a annulé le lancement en Californie, qui était prévu à 5 h 58 HAE, pour donner aux ingénieurs plus de temps pour examiner la télémétrie et les séquences vidéo, à la recherche de tout signe de problème. affecter d’autres missiles.

« Retrait de notre deuxième lancement @Starlink la nuit pour donner à l’équipe le temps d’examiner les données d’atterrissage du booster du lancement précédent », a déclaré SpaceX. Il a dit« Une nouvelle date de lancement cible sera partagée une fois disponible. »

Continue Reading

Trending

Copyright © 2023