Connect with us

science

Peuvent-ils découvrir les origines de la vie ?

Published

on

Peuvent-ils découvrir les origines de la vie ?

Micrographie d’une particule de Bennu sombre, d’environ 1 millimètre de long, avec une coquille de phosphate brillante. À droite, une partie plus petite était cassée. Crédit image : de Lauretta & Connolly et al. (2024) Météorologie et science planétaireest ce que je:10.1111/maps.14227

L’analyse d’un échantillon de l’astéroïde Bennu a révélé la présence d’ingrédients essentiels à la vie et de signes d’un passé aquatique, fournissant ainsi un aperçu des origines et de la biochimie du système solaire.

  • Les premières analyses de l’échantillon de l’astéroïde Bennu sont revenues NASAc’est Osiris-Rex La mission a révélé des poussières riches en carbone, en azote et en composés organiques, tous ingrédients essentiels à la vie telle que nous la connaissons. L’échantillon, dominé par des minéraux argileux, notamment de la serpentine, reflète le type de roche trouvée dans les dorsales médio-océaniques de la Terre.
  • Les phosphates de magnésium et de sodium trouvés dans l’échantillon indiquent que l’astéroïde pourrait s’être séparé d’un petit monde océanique ancien et primitif. Le phosphate a été une surprise pour l’équipe car le minéral n’avait pas été détecté par la sonde spatiale OSIRIS-REx alors qu’elle se trouvait sur Bennu.
  • Alors qu’un phosphate similaire a été trouvé dans un échantillon de l’astéroïde Ryugu livré par Agence japonaise d’exploration aérospatialeLors de la mission Hayabusa 2 de l’Agence japonaise d’exploration aérospatiale en 2020, les phosphates de sodium et de magnésium détectés dans l’échantillon de Bennu se distinguaient par leur pureté (c’est-à-dire l’absence d’autres substances incluses dans le minéral) et la taille de leurs grains, ce qui est sans précédent dans aucun échantillon de météorite.
Astéroïde mosaïque Bennu OSIRIS-REx

Cette mosaïque de Bennu a été créée à partir des observations effectuées par le vaisseau spatial OSIRIS-REx de la NASA, qui était à proximité de l’astéroïde pendant plus de deux ans. Droits d’auteur : NASA/Goddard/Université de l’Arizona

Découvertes de la composition de l’astéroïde Bennu

Les scientifiques attendaient avec impatience l’opportunité de forer l’échantillon immaculé d’astéroïde Bennu de 4,3 onces (121,6 grammes) collecté par la mission OSIRIS-REx (Origins, Spectroscopic Interpretation, Resource Identification, and Security – Regolith Explorer) de la NASA depuis sa dernière livraison sur Terre. automne. Ils espéraient que ce matériau contenait des secrets sur le passé du système solaire et sur la biochimie qui aurait pu conduire à l’origine de la vie sur Terre. Une première analyse de l’échantillon Bennu, récemment publiée dans la revue… Météorologie et science planétairece qui indique que cet enthousiasme était justifié.

READ  IXPE découvre une nouvelle source de rayons X ultra-lumineux dans la Voie Lactée

L’équipe d’analyse des échantillons de la sonde OSIRIS-REx a découvert que l’astéroïde Bennu contient les ingrédients originaux qui ont formé notre système solaire. La poussière d’astéroïde est riche en carbone et en azote, ainsi qu’en composés organiques, qui sont tous des composants essentiels de la vie telle que nous la connaissons. L’échantillon contenait également du phosphate de sodium et de magnésium, ce qui a été une surprise pour l’équipe de recherche, car il n’a pas été détecté dans les données de télédétection collectées par le vaisseau spatial Bennu. Sa présence dans l’échantillon suggère que l’astéroïde pourrait s’être séparé d’un petit monde océanique primitif disparu depuis longtemps.

Matériaux finaux de l'astéroïde Bennu

Une vue de huit plateaux d’échantillons contenant le matériau final de l’astéroïde Bennu. De la poussière et des roches ont été versées dans des plateaux depuis la plaque supérieure de la tête du mécanisme d’échantillonnage tactile (TAGSAM). 51,2 grammes ont été collectés à partir de ce moulage, ce qui porte la masse finale de l’échantillon d’astéroïde à 121,6 grammes. Copyright : NASA/Erica Blumenfeld et Joseph Aebersold

L’analyse d’un échantillon de l’astéroïde Bennu a révélé des informations intéressantes sur la composition de l’astéroïde. Dominé par des minéraux argileux, en particulier de la serpentine, l’échantillon reflète le type de roche trouvée dans les crêtes médio-océaniques de la Terre, là où les matériaux du manteau, la couche située sous la croûte terrestre, rencontrent l’eau.

Cette réaction ne crée pas seulement de l’argile ; Il donne également naissance à une variété de minéraux tels que des carbonates, des oxydes de fer et des sulfures de fer. Mais la découverte la plus surprenante est la présence de phosphates hydrosolubles. Ces composés sont les composants biochimiques de toute vie connue sur Terre aujourd’hui.

Alors qu’un phosphate similaire a été trouvé dans l’échantillon d’astéroïde Ryugu envoyé par la mission Hayabusa 2 de la Japan Aerospace Exploration Agency (JAXA) en 2020, le phosphate de sodium et de magnésium détecté dans l’échantillon de Bennu se distingue par sa pureté, c’est-à-dire l’absence d’autres matériaux dans le minéral – et la taille de ses grains est sans précédent dans aucun échantillon de météorite.

Échantillons d’images microscopiques de l’astéroïde Bennu

Une petite partie de l’échantillon d’astéroïde Bennu renvoyé par la mission OSIRIS-REx de la NASA, comme le montrent les images au microscope. Le panneau supérieur gauche montre une particule de benno de couleur foncée, d’environ un millimètre de long, avec une enveloppe externe de phosphate brillant. Les trois autres panneaux montrent des images progressivement agrandies d’un fragment de la particule qui s’est détaché le long d’une veine brillante contenant du phosphate, prises au microscope électronique à balayage. Copyright : De Lauretta & Connolly et al. (2024) Météorologie et science planétaireest ce que je:10.1111/maps.14227

La découverte de magnésium et de phosphate de sodium dans l’échantillon de Bennu soulève des questions sur les processus géochimiques qui ont concentré ces éléments et fournit également des indices précieux sur les conditions historiques de Bennu.

READ  Délai d'exécution rapide pour l'entrée d'Adam

« La présence et l’état du phosphate, ainsi que d’autres éléments et composés sur Bennu, indiquent un passé aqueux pour l’astéroïde », a déclaré Dante Lauretta, co-auteur principal de l’étude et chercheur principal du programme OSIRIS-REx à l’Université. de l’Arizona à Tucson. « Il est possible que Bennu faisait autrefois partie d’un monde plus humide, bien que cette hypothèse nécessite une enquête plus approfondie. »

« OSIRIS-REx nous a donné exactement ce que nous espérions : un grand échantillon d’astéroïde vierge, riche en azote et en carbone provenant d’un monde auparavant humide », a déclaré Jason Durkin, co-auteur de l’étude et scientifique du projet OSIRIS-REx au Goddard de la NASA. Centre de vols spatiaux à Greenbelt, Maryland ».

Le vaisseau spatial OSIRIS REx quitte la surface de Bennu

Le vaisseau spatial OSIRIS-REx de la NASA quitte la surface de l’astéroïde Bennu après avoir collecté un échantillon. Crédit image : Centre de vol spatial Goddard de la NASA/Laboratoire CI/SVS

Malgré son histoire probable d’interaction avec l’eau, Bennu reste un astéroïde chimiquement primitif, avec ses proportions élémentaires très similaires à celles du Soleil.

« L’échantillon que nous avons ramené constitue actuellement le plus grand réservoir de matière d’astéroïde non altérée sur Terre », a déclaré Loretta.

Cette formation offre un aperçu des premiers jours de notre système solaire, il y a plus de 4,5 milliards d’années. Ces roches ont conservé leur état d’origine, et n’ont ni fondu ni solidifié depuis leur création, confirmant ainsi leurs origines anciennes.

L’équipe a confirmé que l’astéroïde est riche en carbone et en azote. Ces éléments sont essentiels à la compréhension des environnements dans lesquels les matériaux de Bennu sont originaires et des processus chimiques qui ont transformé des éléments simples en molécules complexes, susceptibles de jeter les bases de la vie sur Terre.

READ  Le verre lunaire montre les effets de l'astéroïde lunaire reflété sur Terre

« Ces résultats soulignent l’importance de collecter et d’étudier les matériaux provenant d’astéroïdes comme Bennu, en particulier les matériaux de faible densité qui brûlent généralement lorsqu’ils entrent dans l’atmosphère terrestre », a déclaré Lauretta. « Ces matériaux détiennent la clé pour élucider les processus complexes de formation du système solaire et de biochimie qui pourraient avoir contribué à l’émergence de la vie sur Terre. »

Des dizaines d’autres laboratoires aux États-Unis et dans le monde recevront des parties de l’échantillon Bennu du Johnson Space Center de la NASA à Houston dans les mois à venir, et d’autres articles scientifiques décrivant les analyses de l’échantillon Bennu sont attendus dans les prochaines années. Équipe d’analyse d’échantillons OSIRIS-REx.

« Les échantillons de Bennu sont des roches extraterrestres incroyablement belles », a déclaré Harold Connolly, co-auteur principal de l’étude et scientifique chargé des échantillons de la mission OSIRIS-REx à l’Université Rowan de Glassboro, dans le New Jersey. « Chaque semaine, l’équipe d’analyse d’échantillons OSIRIS-REx fournit de nouveaux et des résultats surprenants dans « Parfois, ils contribuent à imposer des contraintes importantes sur l’origine et l’évolution des planètes semblables à la Terre. »

Le vaisseau spatial OSIRIS-REx a été lancé le 8 septembre 2016, se dirigeant vers l’astéroïde géocroiseur Bennu et collectant un échantillon de roches et de poussière à la surface. OSIRIS-REx, la première mission américaine à prélever un échantillon d’un astéroïde, a livré l’échantillon sur Terre le 24 septembre 2023.

Référence : « Astéroïde (101955) Bennu en laboratoire : Caractéristiques de l’échantillon collecté par la sonde spatiale OSIRIS-REx » par Dante S. Loretta, Harold C. Connolly, Joseph E. Aebersold, Connell M. ou. D. Alexandre, Ronald L. Ballouz, Jessica J. Barnes, Helena C. Bates, Carina A. Bennett, Laurinne Blanche, Erika H. Blumenfeld, Simon J. Clemett, George D. Cody, Daniella N. DellaGiustina, Jason P. Dworkin, Scott A. Eckley, Dionysis I. Foustoukos, Ian A. Franchi, Daniel P. Glavin, Richard C. Greenwood, Pierre Haenecour, Victoria E. Hamilton, Dolores H. Hill, Takahiro Hiroi, Kana Ishimaru, Fred Jourdan, Hannah H. Kaplan, Lindsay P. Keller, Ashley J. King, Piers Koefoed, Melissa K. Kontogiannis, Loan Le, Robert J. Macke, Timothy J. McCoy, Ralph E. Milliken, Jens Najorka, Ann N. Nguyen, Maurizio Pajola, Anjani T. Polit, Kevin Reiter, Heather L. Roper, Sarah S. Russell, Andrew J. Ryan, Scott A. Sandford, Paul F. Scofield, Cody D. Schultz, Laura B. Seifert, Shogo Tachibana, Cathy L. Thomas-Kiberta, Michelle S. Thompson, Valerie Tu, Filippo Tosperti, Qun Wang, Thomas J. Zija, C.W. à Woolner, 26 juin 2024, Météorologie et science planétaire.
DOI : 10.1111/maps.14227

Le Goddard Space Flight Center de la NASA à Greenbelt, Maryland, a géré la gestion globale de la mission, l’ingénierie des systèmes, ainsi que la sécurité et l’assurance de la mission pour OSIRIS-REx. Dante Lauretta, de l’Université de l’Arizona à Tucson, est le chercheur principal. L’université dirige l’équipe scientifique, planifiant le suivi scientifique et le traitement des données de la mission. Lockheed Martin Space à Littleton, Colorado, a construit le vaisseau spatial et assure les opérations aériennes. Goddard et Kinetics Aerospace étaient chargés de guider le vaisseau spatial OSIRIS-REx. OSIRIS-REx est organisé à la NASA Johnson. Les partenariats internationaux pour cette mission comprennent l’altimètre laser OSIRIS-REx de l’Agence spatiale canadienne et la collaboration scientifique sur l’échantillonnage d’astéroïdes avec la mission Hayabusa2 de l’Agence japonaise d’exploration aérospatiale. OSIRIS-REx est la troisième mission du programme New Frontiers de la NASA, géré par le Marshall Space Flight Center de la NASA à Huntsville, en Alabama, pour le compte de la direction des missions scientifiques de l’agence à Washington.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Développement de nouveaux aptamères d’ADN de mélanopsine pour réguler les rythmes circadiens

Published

on

Développement de nouveaux aptamères d’ADN de mélanopsine pour réguler les rythmes circadiens

résumé:

Les aptamères d’ADN de mélanopsine qui régulent l’horloge des rythmes biologiques ont été développés par l’Université de technologie de Toyohashi et le groupe de l’Institut national des sciences et technologies industrielles avancées (AIST).

Les aptamères d’ADN peuvent se lier spécifiquement aux biomolécules pour moduler leur fonction, ce qui en fait des agents thérapeutiques idéaux pour les oligonucléotides. Nous avons examiné l’aptamère ADN mélanopsine (OPN4), un photopigment bleu de la rétine qui joue un rôle clé dans l’utilisation des signaux lumineux pour réinitialiser la phase des rythmes circadiens de l’horloge centrale.

Tout d’abord, 15 aptamères d’ADN de mélanopsine (Melapts) ont été identifiés après huit cycles de Cell-SELEX en utilisant des cellules exprimant la mélanopsine sur la membrane cellulaire. Une analyse fonctionnelle ultérieure de Melapt a été réalisée dans une lignée cellulaire de fibroblastes exprimant de manière stable à la fois Période 2:ELuc et la mélanopsine en déterminant dans quelle mesure ils réinitialisent la phase des rythmes circadiens des mammifères en réponse à la stimulation de la lumière bleue. Période 2 L’expression rythmique a été surveillée sur une période de 24 heures Période 2 : ELuc: Thymidine kinase (TK):OPN4 Fibroblastes stables exprimant la mélanopsine. À l’aube, quatre mélaptes ont avancé leur phase de> 1, 5 h, tandis que sept mélaptes ont retardé leur phase de> 2 h. Un petit nombre de mélaptes a induit un déphasage d’environ 2 h, même en l’absence de stimulation lumineuse, peut-être parce que les mélaptes ne peuvent influencer que partiellement les signaux d’entrée pour le déphasage. De plus, quelques mélaptes ont provoqué des déphasages dans Période 1:: Des souris transgéniques luc (Tg) ont été utilisées pour surveiller les rythmes circadiens à travers… Période 1 Expression rythmique.

Ces aptamères d’ADN pourraient avoir la capacité d’affecter la mélanopsine In vivoEn résumé, les aptamères Melapts peuvent réguler avec succès le signal d’entrée et le déphasage (à la fois avance de phase et retard de phase) des rythmes circadiens des mammifères. dans le laboratoire Et In vivo.

détails:

Améliorer indirectement le cycle veille-sommeil en manipulant la capacité de la mélanopsine à transmettre des signaux à l’horloge centrale serait socialement et économiquement bénéfique.

READ  10 faits amusants alors que la comète de Halley fait un retour en force

La mélanopsine est une protéine photoréceptrice exprimée dans les cellules ganglionnaires de la rétine qui absorbent la lumière bleue avec une absorption maximale de 477 nm. La mélanopsine est connue pour jouer un rôle important dans la réinitialisation de phase de l’horloge circadienne des mammifères par la lumière bleue et dans l’expression rythmique des gènes de l’horloge, par ex. Période 1,2 (Par1,2). La phase de l’horloge circadienne moléculaire est réinitialisée et dépend du moment de la stimulation lumineuse et de l’induction de la lumière transitoire. Pour chaque 1 Par les photorécepteurs de la mélanopsine (Figure 1). Récemment, les antagonistes de la mélanopsine acquis grâce au criblage chimique de bibliothèques chimiques contribuent principalement au retard de phase du rythme.

Dans cette étude, nous avons utilisé l’évolution cellulaire systématique des ligands par la méthode d’enrichissement exponentiel (Cell-SELEX) pour identifier les aptamères d’ADN (ADN simple brin ; ADNsb) qui provoquent un déphasage de la mélanopsine dans les rythmes circadiens. Au total, 15 aptamères de mélanopsine (Melapts 1 à 15) ont été analysés pour évaluer leur capacité à déphaser les rythmes circadiens. Par2::ELuc oscillations vitales dans Par2:ELuc:TK:Mel cellules stables, où suit le rapporteur biologique Par2 La région promotrice qui contrôle l’amplificateur de la luciférase émet une couleur verte à partir de Periarinus tremeteluminans, avec une expression accrue de la mélanopsine sous le contrôle du promoteur de la thymidine kinase (TK). Dans ces lignées de fibroblastes stables, la voie de signalisation est intégrée dans un fibroblaste imitant la voie de signalisation allant de la rétine à l’horloge centrale (noyau ou noyaux suprachiasmatiques : SCN) par la mélanopsine (Figure 2).

Les aptamères d’acide nucléique sont des molécules d’ARN/ARN courtes et simple brin qui peuvent se lier sélectivement à des cibles, protéines, peptides et autres molécules spécifiques, et peuvent être utilisées en clinique pour modifier la fonction des molécules cibles. Les principaux avantages de ces aptamères incluent leur spécificité cible élevée, leur immunogénicité et leur facilité de synthèse.

READ  Voyager 1 renvoie des données après que la NASA a réparé à distance une sonde vieille de 46 ans | espace

Parmi les 15 aptamères d’ADN de mélanopsine (Melapts), quatre melapts ont provoqué une avance de phase et sept melapts ont provoqué un retard des rythmes circadiens (de > 1,5 h et > 2 h, respectivement) chez Par2::Lignée cellulaire ELuc. Un petit nombre de cellules Melapts ont induit des déphasages d’une durée d’environ 2 h, même en l’absence de photostimulation dans le laboratoire.

Melapt04 et Melapt10 ont induit une avance ou un retard de phase circadienne d’environ 3 heures, respectivement, dans CT22 et CT8 pendant le processus d’entrée du signal lumineux. Cela suggère que Melapt04 régule la phase des rythmes circadiens et facilite le sommeil et l’éveil, principalement par la progression des phases (Figure 3-5). Il existe deux types de mélaptes qui avancent et retardent le déphasage dans la même direction, quel que soit le moment du stimulus lumineux. Cependant, les trois Melaptes ont avancé et retardé le déphasage dans des directions opposées à l’aube et au crépuscule. Par conséquent, ces Melaptes devraient être utiles dans la régulation des phases des rythmes (Figures 6,7).

Nous avons joué In vivo Expériences similaires à dans le laboratoire Expériences visant à déterminer si la liaison de Melapt à la mélanopsine dans la rétine s’étendant jusqu’au noyau suprachiasmatique affecte les déphasages de l’horloge centrale du noyau suprachiasmatique. Pour chaque 1::Luc Souris transgéniques : des souris qui Pour chaque 1::Luc Le gène recombiné a été inséré dans le génome de toutes les cellules. Pour chaque 1::Luc C’est un gène recombiné Pour chaque 1 La région promotrice suit l’enzyme luciférase dérivée de la luciole en tant que rapporteur pour surveiller les rythmes circadiens.

Huit types de réponses de déphasage provoquant Melapt Par2 Des rythmes d’expression lors d’expériences in vitro ont été injectés dans des follicules oculaires Pour chaque 1:: souris Luc Tg à CT22 (Figure 8, 9). Melapt01, Melapt03, Melapt04, Melapt07, Melapt09 et Melapt10 ont montré des capacités de transformation de phase similaires à celles de Par2:ELuc:TK:Cellules stables Mel: In vivo Et dans le laboratoire.

L’effet de Melabit sur la transformation de phase dans… In vivo Les expériences peuvent être prédites à partir de dans le laboratoire De plus, des déphasages brutaux de trois heures ont été identifiés chez des animaux intacts, quel que soit l’ampleur de l’avance ou du retard des mélaptes dans Par2:Eluk:TK:Cellules de Mel.

READ  Après tout, les mammifères mâles ne sont pas plus gros que les femelles – nouvelle étude

En conclusion:

En résumé, Melapts a pu réguler les signaux d’entrée et les déphasages pour obtenir une avance et un retard de phase dans les rythmes circadiens des mammifères. dans le laboratoire Et In vivo.

Les mélaptes pourraient contribuer aux recherches futures axées sur la réinitialisation des phases circadiennes. Les mélaptes pourraient nous aider à mieux nous adapter aux cycles de vie sociale modernes, permettre d’optimiser les cultures et les animaux domestiques pour une plus grande productivité et aider les travailleurs postés à surmonter le décalage social en ajustant les phases circadiennes. Ces mélaptes pourraient contribuer à réinitialiser la phase des horloges circadiennes dans les voies d’entrée photosynthétiques.

Organisme de financement:

Cette étude a été financée par un financement de recherche de TechnoPro Inc. TechnoPro R&D et le programme de parrainage des Jeunes Chercheurs en Recherche Interdisciplinaire de Pointe (RN). Le financement pour les scientifiques de Keban (n° RN 24590350 et 20H00614) a été obtenu de la Société japonaise pour la promotion de la science (JSPS), de la Mitsubishi Science Foundation (à RN) et d’une subvention de recherche pour l’innovation en science et technologie à l’Université de Toyohashi. de technologie (à RN). Cette étude a également été soutenue par le ministère de l’Éducation, de la Culture, des Sports, de la Science et de la Technologie du Japon (YN 21H02083).

source:

Référence dans le magazine :

Nakazawa, K. et autres(2024). Les aptamères d’ADN de mélanopsine peuvent réguler les signaux d’entrée des rythmes circadiens des mammifères en modifiant la phase de l’horloge moléculaire. Frontières des neurosciences. est ce que je.org/10.3389/fnins.2024.1186677.

Continue Reading

science

Un chercheur développe une méthode pour convertir la chaleur en énergie pour les engins spatiaux

Published

on

Un chercheur développe une méthode pour convertir la chaleur en énergie pour les engins spatiaux

La source d’énergie développée par Yi Cheng, professeur à la Northeastern University, utilisera la chaleur perdue générée par les équipements spatiaux et la lumière du soleil qui n’atteint pas la Terre.

Le tir à la tête de Ye Cheng.
Yi Cheng, professeur adjoint de génie mécanique et industriel, mène des recherches sur le toit de Snell Engineering le 7 juin 2021. Photo : Robbie Wallau/Northeastern University

Un chercheur de la Northeastern University développe un dispositif qui capte la chaleur perdue des équipements spatiaux et la lumière solaire réfléchie et la transforme en source d’énergie pour les vaisseaux spatiaux et les rovers martiens de l’US Air Force.

« Même si cela ne peut fournir que 10 à 15 % d’énergie de secours pour l’électronique, nous pouvons prolonger la durée de vie de l’électronique et du vaisseau spatial », dit-il. Yi Chengprofesseur agrégé de génie mécanique et industriel et directeur du Nanoscale Energy Laboratory de Northeastern.

Cheng travaillera sur le dispositif thermique en collaboration avec Faraday Technology, une société basée dans l’Ohio spécialisée dans le développement de technologies d’ingénierie électrochimique appliquée pour le gouvernement américain et les clients commerciaux.

« Notre objectif est de concevoir un absorbeur et un émetteur thermique hautes performances capables d’absorber, de convertir et d’émettre de l’énergie à la longueur d’onde souhaitée », explique Cheng.

Il affirme que cette technologie serait adaptée aux voyages spatiaux à court et à long terme, notamment à une utilisation sur la Lune, sur Mars ou même sur des satellites lancés depuis notre galaxie.

Au cours des dernières années, Cheng a développé des matériaux pour la récupération et le stockage de l’énergie, les déchets d’énergie et les nanomatériaux.

READ  10 faits amusants alors que la comète de Halley fait un retour en force

Il affirme que la principale source d’énergie dans l’espace est généralement le soleil, avec des panneaux solaires haute performance convertissant la lumière du soleil en énergie pour alimenter les équipements spatiaux.

La source d’énergie développée par Cheng utilisera la chaleur perdue générée par les équipements spatiaux et dissipée dans l’espace, ainsi que la lumière du soleil qui n’atteint pas la Terre et est réfléchie par l’atmosphère.

Cheng affirme que les engins spatiaux et les équipements spatiaux doivent fonctionner dans des conditions extrêmes : des températures extrêmement basses (généralement moins 554 degrés Celsius ou moins 270 degrés Celsius) et un vide quasi total. De plus, la conduite d’engins spatiaux nécessite des ressources énergétiques.

« Nous ne pouvons pas simplement libérer un autre réservoir d’oxygène [for example] « Pour voyager, explique Cheng.

Les appareils électroniques fonctionnant sur des vaisseaux spatiaux ou sur des surfaces à haute température produiront un rayonnement thermique, ou lumière infrarouge, invisible à l’œil nu mais pouvant être détecté comme une sensation de chaleur sur la peau, explique Cheng. Cette chaleur se dissipera dans l’espace et sera perdue.

La chaleur résiduelle existe presque partout, y compris sur Terre, explique Cheng. Par exemple, un moteur chaud ou un four chauffé à haute température dissipe également une partie de cette chaleur.

Cheng affirme que la récupération de cette énergie a été étudiée au cours des dernières décennies et que son équipe appliquera des techniques récemment développées dans la conception de son système thermique.

Premièrement, les chercheurs testeront différents matériaux et surfaces artificiels – respectivement appelés métamatériaux et métasurfaces – afin d’utiliser l’absorbeur de chaleur proposé. Les métamatériaux ont certaines propriétés que l’on ne remarque pas dans les matériaux naturels. Ils n’existent pas naturellement sur Terre, ils doivent donc être fabriqués à l’échelle nanométrique en laboratoire, explique Cheng.

READ  IXPE découvre une nouvelle source de rayons X ultra-lumineux dans la Voie Lactée

Selon Cheng, le problème avec les matériaux courants est qu’ils n’ont pas de propriétés d’absorption ou d’émission élevées aux longueurs d’onde requises pour l’énergie infrarouge. Cheng dit que la longueur d’onde de la lumière infrarouge se situe entre 1,5 et 2,5 micromètres, ce qui est environ 12 à 24 fois inférieur au diamètre d’un cheveu humain.

«Cela nécessite donc un travail théorique et expérimental de la part de notre groupe», dit-il. « En fait, mes intérêts de recherche se concentrent sur le réglage actif et dynamique des propriétés thermiques, rayonnantes et optiques. [of materials] ». »

« Nous devons également équilibrer le poids et le coût », explique Cheng. « Nous devons équilibrer beaucoup de choses. Ainsi, étant donné le choix limité de matériaux utilisés dans l’espace, cela nous a amené à réfléchir à l’utilisation de la nanotechnologie pour concevoir des matériaux fonctionnels en tant que dispositif thermique. »

Il affirme que même si la nanotechnologie, ou les nanomatériaux, coûte cher, elle fonctionne très bien. Sans nanotechnologie, il est impossible d’absorber des longueurs d’onde spécifiques dans des conditions extrêmes.

Cheng affirme que les scientifiques utilisent des matériaux résistants à la chaleur pour fabriquer des nanomatériaux, qui sont stables, ont un point de fusion élevé dépassant 2 700 degrés (ou 1 500 degrés Celsius) et une longue durée de vie.

Un bon candidat est le tungstène, un métal rare avec les points de fusion et d’ébullition les plus élevés parmi les éléments connus sur Terre, explique Cheng. Cheng ne s’appuie pas uniquement sur ce matériau, mais lorsqu’il est combiné avec d’autres matériaux, il peut être utile dans les conditions difficiles de l’espace.

READ  Rencontrez la fille brésilienne de 8 ans Nicole Oliveira, qui a été surnommée la plus jeune astronome du monde

Cheng passe cet été en tant que membre du corps professoral de la NASA au Glenn Research Center de Cleveland. Il mène des recherches sur la gestion de la chaleur pour la campagne Artemis qui vise à ramener les Américains sur la Lune en préparation de la première mission habitée vers Mars.

« J’espère vraiment que ce que je fais pour l’Air Force et la NASA contribuera en fait aux futurs projets de voyages spatiaux plus longs », a déclaré Cheng.

les sciences et la technologie

Histoires modernes

Actualités, découvertes et analyses du monde entier

Continue Reading

science

Regardez la lune recouvrir l’étoile géante bleue Spica le 13 juillet

Published

on

Regardez la lune recouvrir l’étoile géante bleue Spica le 13 juillet

L’un des événements les plus intéressants de l’astronomie optique, et certainement le plus rapide, se produit lorsque la Lune éclipse une étoile. Le bord de la lune se rapproche, semble appuyer dessus pendant plusieurs secondes, puis l’étoile disparaît soudainement ! Il réapparaît à la même vitesse sur la face cachée de la Lune jusqu’à une heure ou plus plus tard.

Le samedi 13 juillet, toute personne disposant d’un télescope et d’un ciel dégagé devrait se concentrer sur la lune de ce soir-là, juste après son premier quartier (éclairée à 52 %). À ce moment-là, la Lune passera devant l’étoile de première magnitude Cygnus Spongiosa vue d’Amérique du Nord.

Continue Reading

Trending

Copyright © 2023