En peu de temps depuis agence de la Nasa rover de persévérance A atterri sur Mars Lac de cratère Le 18 février 2021, elle est déjà entrée dans l’histoire.
À l’heure actuelle, Mars et la Terre sont situées de part et d’autre du Soleil et les planètes ne peuvent pas communiquer entre elles. Après avoir travaillé sans interruption pendant 216 jours sur Mars, les équipes scientifiques prennent leur première vraie pause depuis le début de la mission.
Parmi tous ces succès incroyables, il y a trois étapes principales qui nous passionnent particulièrement :
3. CCollecte des premiers échantillons des roches de base
2. Piloter un hélicoptère ingéniosité
1. Publication de nos premiers résultats scientifiques sur le cratère du delta de Jezero.
Persévérance a en fait mis en cache deux échantillons de roche martienne après avoir foré des carottes dans une roche, dont le premier est le cratère que nous voyons ici.NASA/JPL-Caltech
3. Comment la NASA a-t-elle collecté des échantillons sur Mars
L’un des principaux objectifs de la persévérance est d’utiliser système d’échantillon de bobine Pour extraire de petites carottes de roche – de la taille de marqueurs effaçables à sec – et les sceller dans des tubes à échantillons spéciaux. Une future mission les choisira et les amènera dans un long voyage interplanétaire vers la Terre.
Pour la première tentative de forage de Perserverance en août, notre équipe a sélectionné une belle roche plate facile à atteindre avec une perceuse. Après six jours d’évaluation du substrat rocheux – et enfin de forage – nous avons été ravis de voir un trou dans le sol et d’obtenir la confirmation que le tube d’échantillonnage avait été scellé avec succès.
Cependant, le lendemain, le rover a envoyé des photos du tube tubulaire à l’intérieur, et nous avons vu qu’il était en fait vide. Une partie de l’atmosphère de Mars est piégée à l’intérieur et serait utile pour l’étude, mais ce n’est pas ce que l’équipe espérait.
En fin de compte, notre équipe a conclu que la roche elle-même était beaucoup plus molle que prévu et qu’elle s’était complètement brisée pendant le processus de forage.
Trois semaines et 550 mètres plus tard, nous sommes tombés sur des roches prometteuses dépassant de la surface rouge. Cela indique que les roches étaient plus dures et donc plus faciles à échantillonner.
Cette fois, Persévérance a réussi à extraire et à stocker deux carottes de roche grise polie par le vent. Après avoir collecté jusqu’à quelques dizaines d’autres, les échantillons seront déposés dans un endroit sûr et facilement accessible à la surface de Mars. agence de la Nasa Retour d’échantillon de Mars La mission, qui est actuellement en cours de développement, capturera les échantillons de tubes fin 2020 et les rapportera à la maison.
Mais les scientifiques n’ont pas à attendre aussi longtemps pour en savoir plus sur les roches. Sur les deux sites, j’ai utilisé le fichier de persistance Sherlock Et pixels Un spectromètre sur son bras pour mesurer la composition des roches. Nous avons trouvé des minéraux cristallins indiquant la formation de roches dans une coulée de lave basaltique, ainsi que des minéraux salins qui pourraient être Preuve d’eaux souterraines anciennes.
Le premier vol d’Ibdaa, vu dans cette vidéo, a montré qu’un hélicoptère pouvait voler vers Mars. Crédit : NASA/JPL-Caltech.
2. Dextérité : premier dans le voyage
La persévérance est peut-être loin du sol, mais elle a son côté. Les hélicoptère d’ingéniosité Il s’est séparé du rover peu de temps après son atterrissage sur Mars et est devenu le premier rover à traverser l’atmosphère d’une autre planète.
Dextérité à énergie solaire, peser 4 livres (1,8 kg)Son corps principal a à peu près la taille d’un pamplemousse. Le 19 avril 2021, l’hélicoptère a effectué son premier vol, planant à 3 mètres au-dessus du sol pendant 39 secondes avant de se poser. Ce court saut a montré que ses longues pales pouvaient générer suffisamment de portance pour lui permettre de voler dans l’air raréfié de Mars.
Les vols suivants ont testé la capacité de l’hélicoptère à se déplacer horizontalement, parcourant de plus longues distances à chaque fois, voyageant aussi loin que 2 050 pieds (625 mètres) Sur son vol le plus éloigné à ce jour.
La créativité a maintenant volé 13 fois et capturé des images détaillées de la Terre pour explorer le terrain accidenté avant de persévérer. Ces images aident l’équipe à déterminer comment contourner les obstacles sur le chemin vers la destination finale du véhicule, un grand delta au cratère Jezero.
Le delta du cratère Jezero, montré sur cette image satellite, est l’endroit où Persévérance collectera la majorité de ses échantillons.ESA / DLR / FU-Berlin
Cependant, la précision des données satellitaires n’est pas assez élevée pour confirmer si les sédiments se sont lentement déposés dans un lac à longue durée de vie ou si la structure s’est formée dans des conditions plus sèches. Le seul moyen d’en être sûr était de prendre des photos depuis la surface de Mars.
détermination immobilier Un mile (environ 2 kilomètres) des falaises à l’avant du delta. Nous sommes tous les deux dans l’équipe responsable de Mastkam-Z Un outil, un ensemble de caméras avec zooms qui nous permet de voir un trombone de l’autre côté d’un terrain de football.
Pendant les premières semaines de la mission, nous avons utilisé la Mastcam-Z pour sonder des roches éloignées. À partir de ces vues panoramiques, nous avons choisi des endroits spécifiques pour regarder plus en détail avec le rover SuperCamCaméra télescopique.
Lorsque les images sont revenues sur Terre, nous avons vu des couches de sédiments en pente dans les parties inférieures des falaises de 260 pieds (80 mètres). Vers le sommet, nous avons repéré des rochers, certains atteignant 1,5 mètre de diamètre.
A partir de la structure de ces formations, notre équipe a pu reconstituer une histoire géologique vieille de plusieurs milliards d’années, ce que nous avons fait publié Dans Science le 7 octobre 2021.
Pendant longtemps – peut-être des millions d’années – une rivière s’est déversée dans un lac qui a rempli le cratère Jezero. Cette rivière a lentement déposé les couches de sédiments en pente que l’on voit dans les rapides du delta. Plus tard, la rivière est devenue principalement sèche, à l’exception de quelques inondations majeures. Ces événements avaient suffisamment d’énergie pour transporter les gros rochers en aval et les déposer au-dessus des sédiments anciens; Ce sont les rochers que nous voyons au-dessus des falaises maintenant.
Depuis, le climat est sec et les vents érodent lentement les rochers.
La confirmation de l’existence d’un lac dans le cratère Jezero est la première découverte scientifique majeure de l’expédition. L’année prochaine, le Perseverance atteindra le sommet du delta, étudiera les couches rocheuses en détail en cours de route et collectera de nombreux échantillons. Lorsque ces échantillons arriveront enfin sur Terre, nous saurons s’ils contiennent des signes de vie microbienne qui auraient pu prospérer autrefois dans cet ancien lac sur Mars.
Les modules Zarya de fabrication russe (à gauche) et les modules Unity de fabrication américaine sont couplés.
Crédit : NASA
HOUSTON – La NASA a considérablement modifié ses plans concernant un véhicule de désorbitation américain (USDV) capable d’effectuer une désorbite contrôlée de la Station spatiale internationale (ISS) à la fin des opérations en équipage. La NASA a publié une demande de proposition (RFP) révisée à la veille du 25…
La NASA cristallise sa stratégie pour la station spatiale Deorbit Il a été publié dans Rapport quotidien sur l’aérospatiale et la défensele résumé du marché de l’Aviation Week Information Network (AWIN) et est inclus dans votre adhésion à l’AWIN.
Pas un membre? Découvrez comment accéder aux informations et aux données de marché dont vous avez besoin pour rester au courant de ce qui se passe dans la communauté de l’aérospatiale et de la défense.
Dr Ersham Hamidi et Dr Farda Janbaz dans le laboratoire laser.
Paysage plus
Crédit : Reinhard Vendler, Université de Bâle
L’utilisation de lasers au lieu de scalpels et de scies présente de nombreux avantages en chirurgie. Cependant, ils ne sont utilisés que dans des cas isolés. Mais cela est peut-être sur le point de changer : les systèmes laser deviennent de plus en plus intelligents et améliorés, explique une équipe de recherche de l’Université de Bâle.
Même en 1957, lorsque Gordon Gould a inventé le terme « laser » (abréviation de « laser »).àLumière uneAmplification par ssimulation Hune tâche R.adiation »), il imaginait déjà les possibilités de son utilisation en médecine. Les chirurgiens pourront pratiquer de minuscules incisions sans toucher le patient.
Mais avant que cela puisse se produire, il y avait et il y a encore de nombreux obstacles à surmonter. Les sources lumineuses à commande manuelle ont été remplacées par des systèmes mécaniques commandés par ordinateur, afin de réduire les blessures causées par une manipulation maladroite. Le passage des faisceaux continus aux lasers pulsés, qui s’allument et s’éteignent rapidement, a réduit la chaleur qu’ils produisent. Les progrès techniques ont permis aux lasers d’entrer dans le monde de l’ophtalmologie au début des années 1990. Depuis lors, cette technologie s’est également étendue à d’autres domaines de la médecine, mais dans relativement peu d’applications, elle a remplacé le scalpel et la scie à os.
Les préoccupations en matière de sécurité constituent l’obstacle le plus important : comment pouvons-nous prévenir les blessures aux tissus environnants ? Dans quelle mesure la profondeur de coupe peut-elle être contrôlée afin que les couches de tissus plus profondes ne soient pas accidentellement endommagées ?
Des chercheurs de l’Université de Bâle viennent d’apporter une contribution importante à l’utilisation sûre et précise des lasers avec leur récente publication dans la revue spécialisée Les lasers en chirurgie et en médecine. L’équipe de recherche, dirigée par le Dr Ferda Kanbaz du Département de génie biomédical de Bâle et le professeur Azhar Zam, anciennement de l’Université de Bâle mais désormais basée à l’Université de New York, a développé un système qui combine trois fonctions: il coupe les os, contrôle la profondeur de coupe et différencie les tissus.
Trois faisceaux laser dirigés vers un seul endroit
Ces trois fonctions sont assurées par trois faisceaux laser alignés pour se concentrer sur le même endroit. Le premier laser agit comme un capteur tissulaire, balayant les zones autour du site où l’os sera coupé. Grâce à cela, des impulsions laser sont envoyées à la surface à intervalles réguliers, pour ainsi dire, vaporisant à chaque fois une petite partie du tissu. La composition de ce tissu évaporé est mesurée à l’aide d’un spectromètre. Chaque type de tissu possède son spectre individuel – sa propre signature. L’algorithme traite ces données et crée une sorte de carte qui montre où se trouvent les os et où se trouvent les tissus mous.
Le deuxième laser, qui coupe l’os, ne sera activé qu’une fois tout cela terminé, et seulement aux endroits où l’os et non les tissus mous sont visibles sur la carte qui vient d’être créée. Pendant ce temps, le troisième laser – un système optique – mesure la profondeur de coupe et veille à ce que le laser de découpe ne pénètre pas plus profondément que prévu. Pendant la phase de coupe, le capteur de tissu surveille également en permanence si le bon tissu est coupé ou non.
Maîtrise de soi
«La particularité de notre système est qu’il se contrôle tout seul, sans intervention humaine», résume Ferdia Kanbaz, physicienne des lasers.
Jusqu’à présent, les chercheurs testent leur système sur des os de fémur et des tissus de porc obtenus auprès d’un boucher local. Ils ont pu prouver que leur système fonctionne avec une précision de l’ordre du millimètre. La vitesse du laser intégré est également proche de celle d’une intervention chirurgicale traditionnelle.
L’équipe de recherche travaille actuellement à réduire la taille du système. Ils ont déjà atteint la taille d’une boîte d’allumettes en combinant le système optique et le laser de découpe seuls (voir Message d’origine). Une fois qu’ils auront ajouté le capteur tissulaire et pourront miniaturiser davantage l’ensemble du système, ils devraient pouvoir l’insérer dans la pointe de l’endoscope pour des chirurgies mini-invasives.
Chirurgie moins invasive
« Utiliser davantage les lasers en chirurgie est une ambition louable pour plusieurs raisons », souligne le Dr Arsham Hamidi, auteur principal de l’étude. Il souligne que la découpe sans contact réduit quelque peu le risque d’infection. « Des incisions plus petites et plus précises signifient également que les tissus guérissent plus rapidement et que les cicatrices sont réduites. »
La découpe laser contrôlée permet également d’appliquer de nouvelles formes de découpe, de sorte que, par exemple, un implant orthopédique puisse s’emboîter physiquement dans l’os existant. «Un jour, nous pourrons peut-être nous passer complètement du ciment osseux», ajoute Ferda Kanbaz.
Il existe également d’autres domaines de la chirurgie où ce type de préparation combinée est utile : elle peut permettre de distinguer plus précisément les tumeurs des tissus sains environnants, puis de les découper sans retirer une quantité inutile de tissus adjacents. Une chose est sûre : la vision de Gordon Gould du laser en tant qu’outil médical polyvalent se rapproche plus que jamais.
revue
Les lasers en chirurgie et en médecine
Clause de non-responsabilité: AAAS et EurekAlert! Nous ne sommes pas responsables de l’exactitude des newsletters publiées sur EurekAlert ! Par l’intermédiaire d’institutions contributrices ou pour utiliser toute information via le système EurekAlert.
Film de science-fiction de Lars von Trier 2011 tristesse (Maintenant en streaming sur Peacock), c’est deux histoires à la fois. D’une part, il s’agit du combat personnel inhérent au fait d’être une personne ; Comment nous équilibrons nos relations, nos engagements et notre bonheur. D’un autre côté, il s’agit de la destruction imminente de la Terre lorsqu’une planète inattendue apparaît et entre en collision avec nous. Il s’agit aussi de la façon dont ces deux choses se sentent parfois identiques.
Il est peu probable que des mondes inattendus apparaissent et nous frappent, mais il est vrai que les planètes ne tournent pas toujours de manière totalement prévisible. La plupart des systèmes démarrent avec un degré élevé de symétrie et d’harmonie, mais deviennent rapidement plus chaotiques, ce qui rend difficile la prévision de la position et du mouvement des exoplanètes (mondes situés en dehors de notre système solaire). Cependant, les astronomes ont récemment découvert un système rare de planètes proches qui dansent toutes en harmonie presque parfaite.
Les planètes dansent et aucune d’entre elles ne danse mieux que celles-ci
Le Transiting Exoplanet Survey Satellite (TESS) de la NASA a détecté pour la première fois des planètes autour de l’étoile HD110067 en 2020. L’analyse initiale suggérait deux mondes, mais ils n’ont pas eu un aperçu suffisamment précis pour connaître les orbites. Deux ans plus tard, TESS a observé encore et encore qu’il y avait deux mondes, mais lorsqu’ils ont comparé les deux mesures, cela n’avait aucun sens. Les astronomes sont donc allés chercher davantage de données grâce à la mission CHEOPS de l’Agence spatiale européenne (ESA). Il s’agit de l’abréviation de « Caractérisation du satellite ExOPlanet ».
EN RELATION: Le manteau terrestre pourrait être en partie constitué d’une autre planète morte
Grâce à CHEOPS, les astronomes ont pu ratisser large et rechercher des signaux sur une large gamme d’orbites autour de HD110067. C’est à ce moment-là qu’ils ont découvert une troisième planète, et avec elle la clé pour comprendre l’ensemble du système et localiser davantage de planètes. L’astuce était une affaire mathématique unique, selon Déclaration de l’ESA.
Les astronomes ont réalisé que la période orbitale (le temps qu’il faut à une exoplanète pour terminer une orbite autour de son étoile) de la planète la plus intérieure était de 9 114 jours. La période orbitale de la deuxième planète était de 13 763 jours et celle de la troisième de 20 519 jours. L’orbite de chaque planète est environ 1,5 fois la longueur de la planète qui la précède. En d’autres termes, pour trois orbites de la première planète, la deuxième planète en accomplit deux. La relation reste également vraie pour les troisième et quatrième planètes. Les cinquième et sixième planètes ont une résonance de 4:3, tournant trois fois toutes les quatre orbites de la planète qui les précède. Chaque planète de ce système danse en parfaite harmonie avec les mondes qui l’entourent.
Ce genre de danse mathématique tranquille est inhabituel dans l’univers, en particulier dans un système ancien comme celui-ci. La plupart des systèmes démarrent par une résonance harmonique, mais cet équilibre peut facilement être perturbé. La formation d’une grande planète ou un passage rapproché avec une autre étoile peut perturber les orbites et provoquer une désynchronisation des choses. Au fil du temps, les orbites ont tendance à devenir un peu plus chaotiques qu’elles ne l’étaient initialement. Les astronomes estiment que seulement 1 % environ des systèmes planétaires maintiennent des trajectoires orbitales bien ordonnées. Cependant, ce système fonctionne comme neuf dès la sortie de la boîte.
Bien qu’il se soit formé il y a plus d’un milliard d’années, le système autour de HD110067 regorge de planètes en orbite exactement là où elles sont censées se trouver. À tel point que nous avons pu trouver des planètes dont nous ignorions l’existence en suivant un schéma mathématique simple. Si seulement cela était vrai pour la planète voyou Melancholia.
Regardez Mélancolie en streaming maintenant Sur le paon.