Connect with us

science

Torsion et liaison des ondes de matière aux photons

Published

on

Torsion et liaison des ondes de matière aux photons

Les atomes à l’intérieur de la cavité optique échangent leurs états de quantité de mouvement en « jouant au catch » avec les photons. Lorsque les atomes absorbent les photons du laser appliqué, c’est l’ensemble du nuage d’atomes qui rebondit plutôt que les atomes individuels. Crédit : Stephen Burrows/Ray, Thompson and Holland Collections, édité

Des chercheurs du JILA et du NIST ont développé une technique permettant d’atténuer le rebond atomique dans les mesures quantiques en utilisant les interactions d’échange de quantité de mouvement au sein du système de cavités. Cette percée peut grandement améliorer Précision Les capteurs quantiques permettent de nouvelles découvertes en physique quantique.

En raison du rebond atomique, mesurer avec précision les états énergétiques des atomes individuels constitue un défi historique pour les physiciens. quand atome interagit avec un PhotonL’atome « ​​rebondit » dans la direction opposée, ce qui rend difficile la mesure précise de la position et de l’impulsion de l’atome. Ce rebond pourrait avoir de grandes implications pour la détection quantique, qui détecte des changements infimes dans les paramètres, par exemple en utilisant les changements dans les ondes gravitationnelles pour déterminer la forme de la Terre ou même détecter la matière noire.

Ana Maria Rey et James Thompson, boursiers JILA et NIST, Murray Holland, boursier JILA, et leur équipe ont proposé un moyen de surmonter ce rebond atomique en démontrant un nouveau type d’interaction atomique appelée interaction d’échange d’impulsion, dans laquelle les atomes échangent leur impulsion en échangeant photons correspondants. Les détails de la recherche ont été publiés dans un nouvel article de la revue les sciences.

À l’aide d’une cavité – un espace clos constitué de miroirs – les chercheurs ont observé que le recul atomique était supprimé par les atomes échangeant des états énergétiques dans cet espace étroit. Ce processus a créé une absorption collective d’énergie et réparti le recul entre toutes les particules.

Les atomes à l’intérieur de la cavité optique sont des états d’échange

Les atomes à l’intérieur de la cavité optique échangent leurs états de quantité de mouvement en « jouant au catch » avec les photons. Lorsque les atomes absorbent les photons du laser appliqué, c’est l’ensemble du nuage d’atomes qui rebondit plutôt que les atomes individuels. Crédit : Stephen Burrows/Collections Holland, Ray et Thompson

En utilisant ces résultats, d’autres chercheurs peuvent concevoir des cavités pour atténuer les rebonds et autres influences externes dans un large éventail d’expériences, ce qui pourrait aider les physiciens à mieux comprendre les systèmes complexes ou à découvrir de nouveaux aspects de la physique quantique. La conception améliorée de la cavité pourrait également permettre des simulations plus précises de la supraconductivité, comme dans le cas de la jonction Bose-Einstein-Condensate-Bardeen-Cooper-Schrift (BEC-BCS) ou des systèmes physiques à haute énergie.

READ  Un tueur inattendu - Une bactérie "amie ou ennemie" qui tue ses hôtes algues lorsque la symbiose devient inutile

Pour la première fois, il a été observé qu’une interaction d’échange de quantité de mouvement induisait une dynamique de torsion sur un axe (OAT), un aspect de l’intrication quantique, entre les états de la quantité de mouvement atomique. La farine d’avoine agit comme une tresse quantique pour enchevêtrer différentes particules, chaque état quantique étant tordu et lié à une autre particule.

Auparavant, l’OAT n’était observée que dans les états internes des atomes, mais désormais, avec ces nouveaux résultats, on pense que l’OAT induite par l’échange de quantité de mouvement peut aider à réduire le bruit quantique provenant de plusieurs atomes. La capacité à intriguer les états de quantité de mouvement pourrait également conduire à des améliorations de certaines mesures physiques réalisées par des capteurs quantiques, par exemple Ondes gravitationnelles.

Profitez du réseau de densité

Dans le cadre de cette nouvelle étude, inspirée des recherches antérieures de Thompson et de son équipe, les chercheurs ont examiné les effets de la superposition quantique, qui permet à des particules telles que des photons ou des électrons d’exister simultanément dans plusieurs états quantiques.

« Dans ce [new] Project, tous les atomes partagent le même signe de spin ; « La seule différence est que chaque atome est dans une superposition de deux états d’impulsion », a expliqué Chenjie Luo, étudiant diplômé et premier auteur.

Les chercheurs ont découvert qu’ils pouvaient mieux contrôler le rebond atomique en forçant les atomes à échanger des photons et leurs énergies associées. Comme dans un jeu de balle au prisonnier, un seul atome peut « lancer » une « balle au prisonnier » (un photon) et celle-ci rebondit dans la direction opposée. Cette balle douteuse pourrait être attrapée par un deuxième atome, ce qui provoquerait le même rebond à ce deuxième atome. Cela annule les rebonds subis par les deux atomes et les fait en moyenne pour l’ensemble du système de cavités.

READ  Les planètes rocheuses « Super Terre » pourraient avoir de meilleures défenses pour la vie que ne le disent les scientifiques

Lorsque deux atomes échangent des énergies photoniques différentes, le paquet d’ondes résultant (la distribution des ondes de l’atome) forme en superposition un graphique d’impulsion connu sous le nom de réseau de densité, qui ressemble à un peigne fin.

Ajouta Lou. « La formation d’un réseau de densité indique deux états d’impulsion [within the atom] Ils sont tellement « cohésifs » les uns avec les autres qu’ils peuvent intervenir [with each other]Les chercheurs ont découvert que l’échange de photons entre les atomes provoquait la connexion des paquets d’ondes des deux atomes, de sorte qu’il ne s’agissait plus de mesures distinctes.

Les chercheurs peuvent stimuler l’échange de quantité de mouvement en explorant l’interaction entre le réseau de densité et la cavité optique. Étant donné que les atomes échangent de l’énergie, tout rebond provoqué par l’absorption des photons était dispersé parmi l’ensemble de la communauté des atomes plutôt que parmi les particules individuelles.

Suppression du décalage Doppler

En utilisant cette nouvelle méthode de contrôle, les chercheurs ont découvert qu’ils pouvaient également utiliser ce système d’atténuation de la rétrodiffusion pour aider à atténuer un problème de mesure distinct : le décalage Doppler.

Le décalage Doppler, un phénomène de la physique classique, explique pourquoi une sirène ou un klaxon de train change de tonalité lorsqu’il passe devant l’auditeur ou pourquoi certaines étoiles apparaissent rouges ou bleues sur les photographies du ciel nocturne. Il s’agit du changement de fréquence de l’onde lorsqu’elle passe par l’auditeur. La source et l’observateur se rapprochent (ou s’éloignent) l’un de l’autre. En physique quantique, le décalage Doppler décrit le changement d’énergie d’une particule dû au mouvement relatif.

READ  Des relevés aériens de la Grande Barrière de Corail commandés après que des vols ont confirmé le blanchissement massif des coraux | la grande Barrière de corail

Pour des chercheurs comme Lu, le décalage Doppler peut être un défi à surmonter pour obtenir une mesure précise. « Lorsque les photons sont absorbés, le rebond atomique entraînera un décalage Doppler de la fréquence des photons, ce qui constitue un gros problème lorsque l’on parle de spectroscopie précise », a-t-il expliqué. En simulant leur nouvelle méthode, les chercheurs ont découvert qu’ils pouvaient surmonter les biais de mesure dus au décalage Doppler.

Enchevêtrement des échanges d’élan

Les chercheurs ont également découvert que l’échange de quantité de mouvement entre ces atomes peut être utilisé comme une forme d’intrication quantique. Comme l’explique John Wilson, un étudiant diplômé du groupe de Holland : « Lorsqu’un atome tombe, son mouvement vibre à la fréquence de la cavité, ce qui encourage les autres atomes à ressentir collectivement le mécanisme de rétroaction et les incite à corréler son mouvement à travers des oscillations partagées. »

Pour tester davantage cet « enchevêtrement », les chercheurs ont créé une plus grande séparation entre les états de quantité de mouvement des atomes, puis ont catalysé l’échange de quantité de mouvement. Les chercheurs ont découvert que les atomes continuaient à se comporter comme s’ils étaient connectés. « Cela suggère que les deux états d’impulsion oscillent l’un par rapport à l’autre comme s’ils étaient reliés par un ressort », a ajouté Luo.

En ce qui concerne l’avenir, les chercheurs prévoient d’explorer davantage cette nouvelle forme d’intrication quantique, dans l’espoir de mieux comprendre comment elle peut être utilisée pour améliorer différents types de dispositifs quantiques.

Référence : « Les interactions d’échange d’impulsion dans l’interféromètre atomique de Bragg empêchent le décalage Doppler » par Chengyi Lu, Haoqing Zhang, Vanessa B. W. Koh et John D. Wilson, Angjun Chu, Murray J. Holland, Anna Maria Rhee et James K. Thompson, le 2 mai 2024, les sciences.
est ce que je: 10.1126/science.adi1393

Cette recherche a été soutenue par le Département américain de l’énergie, l’Office of Science, les Centres nationaux de recherche en sciences de l’information quantique et le Quantum Systems Accelerator.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Published

on

Le T. rex était peut-être beaucoup plus lourd et plus long qu’on ne le pensait auparavant – étude

Les chercheurs suggèrent que le Tyrannosaurus rex était peut-être 70 % plus lourd qu’on ne le pensait auparavant et 25 % plus long.

Le plus grand T. rex jamais trouvé vivant pourrait être beaucoup plus grand que le plus grand spécimen actuellement connu, puisqu’il pèse environ 15 tonnes au lieu de 8,8 tonnes et mesure 15 mètres de long au lieu de 12 mètres, selon l’étude.

De nombreux dinosaures plus grands appartenant à divers groupes ont été identifiés à partir d’un seul bon spécimen fossile.

Il est donc impossible de savoir si cet animal est un grand ou un petit exemplaire de cette espèce.

Les chercheurs soulignent que déterminer quel dinosaure était le plus grand, sur la base d’une poignée de fossiles, n’a pas beaucoup de sens.

Dans la nouvelle étude, le Dr Jordan Malone du Musée canadien de la nature à Ottawa, au Canada, et le Dr David Hone de l’Université Queen Mary de Londres, ont utilisé la modélisation informatique pour évaluer un groupe de dinosaures T. rex.

Ils ont pris en compte des facteurs tels que la taille de la population, le taux de croissance, la durée de vie moyenne et le caractère incomplet des archives fossiles.

« Notre étude suggère que pour les grands animaux fossiles tels que le T. rex, nous n’avons aucune idée, d’après les archives fossiles, de la taille absolue qu’ils ont pu atteindre », a déclaré le Dr Malone.

« C’est amusant de penser à un T. rex de 15 tonnes, mais les implications sont également intéressantes d’un point de vue biomécanique ou écologique. »

READ  Un tueur inattendu - Une bactérie "amie ou ennemie" qui tue ses hôtes algues lorsque la symbiose devient inutile

Le Dr Hohn a déclaré : « Il est important de souligner qu’il ne s’agit pas vraiment du T. rex, qui constitue la base de notre étude, mais que cette question s’applique à tous les dinosaures et à de nombreuses autres espèces fossiles.

« Se disputer sur « qu’est-ce qui est le plus gros ? » en se basant sur quelques squelettes n’a pas vraiment de sens. »

Le T. rex a été choisi pour le modèle car bon nombre de ses détails étaient déjà bien appréciés.

Le modèle est basé sur des modèles de crocodiles vivants, choisis en raison de leur grande taille et de leur relation étroite avec les dinosaures.

Les chercheurs ont découvert que les plus grands fossiles connus de T. rex se situent probablement dans le 99e centile, soit le 1 pour cent supérieur de la taille du corps.

Cependant, ils soulignent que pour trouver un animal parmi les 99,99 pour cent (un tyrannosaure sur dix mille), les scientifiques devraient fouiller des fossiles au rythme actuel pendant encore 1 000 ans.

Les estimations de taille sont basées sur un modèle, mais la découverte de géants d’espèces modernes suggère qu’il devait encore y avoir des dinosaures plus grands.

« Certains des os et morceaux isolés indiquent clairement des individus plus gros que les squelettes dont nous disposons actuellement », a déclaré le Dr Hoon.

Les résultats ont été publiés dans la revue Ecology and Evolution.

Continue Reading

science

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Published

on

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Un scientifique du Lawrence Berkeley National Laboratory travaille sur un dispositif de séparation lors d’une expérience. Crédit image : Laboratoire national Lawrence Berkeley

Une équipe de scientifiques et de chercheurs du Lawrence Berkeley National Laboratory en Californie a récemment annoncé une réalisation révolutionnaire : la création du Livemorium, ou élément 116, à l’aide d’un faisceau de particules de titane.

C’est la première fois qu’un hépatique est fabriqué de cette manière, rapprochant les chercheurs de l’insaisissable « îlot de stabilité », où les éléments très lourds sont censés avoir une durée de vie plus longue, ce qui les rend plus faciles à étudier. Plus important encore, c’est la première fois qu’un objet extrêmement lourd est fabriqué de cette manière par des humains.

Rainer Kröcken, directeur des sciences nucléaires au Berkeley Lab, a exprimé son optimisme quant à la découverte, soulignant la nature collaborative de l’expérience. Il a déclaré que la production de l’élément 120, la prochaine cible, prendrait beaucoup plus de temps mais semblait désormais possible. Annoncé lors de la conférence Nuclear Structure 2024, l’article sera bientôt disponible sur le référentiel de prépublications arXiv et sera soumis à la revue Physical Review Letters.

Utilisation innovante d’une poutre en titane pour créer l’élément 116
Dans leur expérience, les scientifiques ont utilisé un faisceau de titane-50, un isotope spécifique, pour générer du Livemorium, ce qui en fait l’élément le plus lourd créé à ce jour au laboratoire de Berkeley. Ce laboratoire a une riche histoire de découverte d’éléments, qui a contribué à l’identification de 16 éléments allant du technétium (43) au seaborgium (106).

READ  Nous pourrions bientôt détecter les ondes gravitationnelles des étoiles mourantes

Jacqueline Gates, qui a dirigé le dernier effort, a exprimé sa confiance dans les résultats, notant que les chances que les résultats soient une anomalie statistique sont très faibles. Le processus impliquait de chauffer le titane à environ 3 000 °F (1 649 °C) jusqu’à ce qu’il se vaporise. L’équipe a ensuite bombardé le titane vaporisé avec des micro-ondes, en enlevant 22 électrons et en préparant les ions pour l’accélération dans un cyclotron de 88 pouces au laboratoire de Berkeley.

Les ions de titane accélérés sont dirigés vers une cible de plutonium, des milliards d’ions frappant la cible chaque seconde. Ce bombardement intense a finalement créé deux atomes de Livermorium sur une période de 22 jours. L’utilisation du titane à cette fin représente une nouvelle technologie pour synthétiser des éléments plus lourds, car les éléments précédents de cette gamme, de 114 à 118, avaient été synthétisés à l’aide d’un faisceau de calcium 48.

Jennifer Burr, physicienne nucléaire au groupe des éléments lourds du Berkeley Lab, a souligné l’importance de cette méthode. La production de l’élément 116 à partir de titane valide cette nouvelle approche, ouvrant la voie à de futures expériences visant à produire des éléments plus lourds, comme l’élément 120.

Trouver l’article 120
Le succès de la création de l’élément 116 a ouvert la voie au prochain objectif ambitieux de l’équipe : créer l’élément 120. S’il est atteint, l’élément 120 sera l’atome le plus lourd jamais créé et fera partie de « l’îlot de stabilité », un groupe théorique d’éléments super-lourds de qui devrait être plus long que ceux découverts jusqu’à présent.

READ  Des relevés aériens de la Grande Barrière de Corail commandés après que des vols ont confirmé le blanchissement massif des coraux | la grande Barrière de corail

Le laboratoire prévoit de commencer à tenter de créer l’élément 120 en 2025. Le processus devrait prendre plusieurs années, reflétant la complexité et les défis inhérents à cette recherche de pointe. Les physiciens explorent les limites du tableau périodique, s’efforçant de repousser les limites de la connaissance et de la compréhension humaines en explorant les limites de la stabilité atomique.

Cette réalisation majeure démontre non seulement la créativité des scientifiques du Berkeley Lab, mais ouvre également la voie à de futures découvertes dans le domaine des éléments super-lourds, qui pourraient ouvrir la voie à de nouvelles connaissances sur la nature fondamentale de la matière.

Retrouvez-nous sur YouTube

Participer

Continue Reading

science

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

Published

on

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

La directrice de l’Institut des sciences spatiales et cosmiques, la Dre Jennifer Lutz, a accepté la recommandation principale du groupe de travail sur les initiatives exoplanétaires stratégiques et a décidé de procéder à une étude à grande échelle des exoplanètes naines rocheuses de type M.

Le programme utilisera environ 500 heures du temps discrétionnaire du directeur sur le télescope spatial James Webb pour rechercher l’atmosphère de plus d’une douzaine de systèmes proches.

Près de 250 observations ultraviolettes en orbite avec le télescope spatial Hubble seront utilisées pour déterminer l’activité des étoiles hôtes. Les observations seront effectuées par une équipe de direction du Space Science Institute dirigée par le Dr Nestor Espinosa et soutenue par le Dr Hannah Diamond Lowe en tant qu’équipe adjointe.

L’Institut des sciences spatiales et cosmiques emploie également un comité consultatif scientifique externe pour donner des conseils sur tous les aspects du programme, y compris la sélection des cibles, la vérification des données et les interactions communautaires équitables. Les membres du comité consultatif scientifique seront représentatifs de la communauté exoplanétaire au sens large, couvrant un large éventail d’affiliations institutionnelles et d’étapes de carrière.

Le Space Science Institute annoncera bientôt la possibilité de soumettre des candidatures, y compris des auto-nominations. La contribution de la communauté sera sollicitée sur la liste des cibles ; Les plans d’observation seront publiés bien avant la date limite de GWebb IV.

Rapport du groupe de travail sur les initiatives exoplanétaires stratégiques avec le télescope spatial Hubble et le télescope spatial James Webb

READ  Des relevés aériens de la Grande Barrière de Corail commandés après que des vols ont confirmé le blanchissement massif des coraux | la grande Barrière de corail

Astrobiologie

Membre de l’Explorers Club, ancien gestionnaire de charge utile de la Station spatiale de la NASA/biologiste spatial, homme de plein air, journaliste, ancien grimpeur, synesthésie, mélange de Na’vi, Jedi, Freeman et bouddhiste, langue des signes américaine, camp de base de l’île Devon et vétéran de l’Everest, (il /lui) 🖖🏻

Continue Reading

Trending

Copyright © 2023