Connect with us

science

Torsion et liaison des ondes de matière aux photons

Published

on

Torsion et liaison des ondes de matière aux photons

Les atomes à l’intérieur de la cavité optique échangent leurs états de quantité de mouvement en « jouant au catch » avec les photons. Lorsque les atomes absorbent les photons du laser appliqué, c’est l’ensemble du nuage d’atomes qui rebondit plutôt que les atomes individuels. Crédit : Stephen Burrows/Ray, Thompson and Holland Collections, édité

Des chercheurs du JILA et du NIST ont développé une technique permettant d’atténuer le rebond atomique dans les mesures quantiques en utilisant les interactions d’échange de quantité de mouvement au sein du système de cavités. Cette percée peut grandement améliorer Précision Les capteurs quantiques permettent de nouvelles découvertes en physique quantique.

En raison du rebond atomique, mesurer avec précision les états énergétiques des atomes individuels constitue un défi historique pour les physiciens. quand atome interagit avec un PhotonL’atome « ​​rebondit » dans la direction opposée, ce qui rend difficile la mesure précise de la position et de l’impulsion de l’atome. Ce rebond pourrait avoir de grandes implications pour la détection quantique, qui détecte des changements infimes dans les paramètres, par exemple en utilisant les changements dans les ondes gravitationnelles pour déterminer la forme de la Terre ou même détecter la matière noire.

Ana Maria Rey et James Thompson, boursiers JILA et NIST, Murray Holland, boursier JILA, et leur équipe ont proposé un moyen de surmonter ce rebond atomique en démontrant un nouveau type d’interaction atomique appelée interaction d’échange d’impulsion, dans laquelle les atomes échangent leur impulsion en échangeant photons correspondants. Les détails de la recherche ont été publiés dans un nouvel article de la revue les sciences.

À l’aide d’une cavité – un espace clos constitué de miroirs – les chercheurs ont observé que le recul atomique était supprimé par les atomes échangeant des états énergétiques dans cet espace étroit. Ce processus a créé une absorption collective d’énergie et réparti le recul entre toutes les particules.

Les atomes à l’intérieur de la cavité optique sont des états d’échange

Les atomes à l’intérieur de la cavité optique échangent leurs états de quantité de mouvement en « jouant au catch » avec les photons. Lorsque les atomes absorbent les photons du laser appliqué, c’est l’ensemble du nuage d’atomes qui rebondit plutôt que les atomes individuels. Crédit : Stephen Burrows/Collections Holland, Ray et Thompson

En utilisant ces résultats, d’autres chercheurs peuvent concevoir des cavités pour atténuer les rebonds et autres influences externes dans un large éventail d’expériences, ce qui pourrait aider les physiciens à mieux comprendre les systèmes complexes ou à découvrir de nouveaux aspects de la physique quantique. La conception améliorée de la cavité pourrait également permettre des simulations plus précises de la supraconductivité, comme dans le cas de la jonction Bose-Einstein-Condensate-Bardeen-Cooper-Schrift (BEC-BCS) ou des systèmes physiques à haute énergie.

READ  La joie du compte Twitter apaisant

Pour la première fois, il a été observé qu’une interaction d’échange de quantité de mouvement induisait une dynamique de torsion sur un axe (OAT), un aspect de l’intrication quantique, entre les états de la quantité de mouvement atomique. La farine d’avoine agit comme une tresse quantique pour enchevêtrer différentes particules, chaque état quantique étant tordu et lié à une autre particule.

Auparavant, l’OAT n’était observée que dans les états internes des atomes, mais désormais, avec ces nouveaux résultats, on pense que l’OAT induite par l’échange de quantité de mouvement peut aider à réduire le bruit quantique provenant de plusieurs atomes. La capacité à intriguer les états de quantité de mouvement pourrait également conduire à des améliorations de certaines mesures physiques réalisées par des capteurs quantiques, par exemple Ondes gravitationnelles.

Profitez du réseau de densité

Dans le cadre de cette nouvelle étude, inspirée des recherches antérieures de Thompson et de son équipe, les chercheurs ont examiné les effets de la superposition quantique, qui permet à des particules telles que des photons ou des électrons d’exister simultanément dans plusieurs états quantiques.

« Dans ce [new] Project, tous les atomes partagent le même signe de spin ; « La seule différence est que chaque atome est dans une superposition de deux états d’impulsion », a expliqué Chenjie Luo, étudiant diplômé et premier auteur.

Les chercheurs ont découvert qu’ils pouvaient mieux contrôler le rebond atomique en forçant les atomes à échanger des photons et leurs énergies associées. Comme dans un jeu de balle au prisonnier, un seul atome peut « lancer » une « balle au prisonnier » (un photon) et celle-ci rebondit dans la direction opposée. Cette balle douteuse pourrait être attrapée par un deuxième atome, ce qui provoquerait le même rebond à ce deuxième atome. Cela annule les rebonds subis par les deux atomes et les fait en moyenne pour l’ensemble du système de cavités.

READ  Le Boeing Commercial Crew Vehicle est enfin (presque) prêt pour l'équipage

Lorsque deux atomes échangent des énergies photoniques différentes, le paquet d’ondes résultant (la distribution des ondes de l’atome) forme en superposition un graphique d’impulsion connu sous le nom de réseau de densité, qui ressemble à un peigne fin.

Ajouta Lou. « La formation d’un réseau de densité indique deux états d’impulsion [within the atom] Ils sont tellement « cohésifs » les uns avec les autres qu’ils peuvent intervenir [with each other]Les chercheurs ont découvert que l’échange de photons entre les atomes provoquait la connexion des paquets d’ondes des deux atomes, de sorte qu’il ne s’agissait plus de mesures distinctes.

Les chercheurs peuvent stimuler l’échange de quantité de mouvement en explorant l’interaction entre le réseau de densité et la cavité optique. Étant donné que les atomes échangent de l’énergie, tout rebond provoqué par l’absorption des photons était dispersé parmi l’ensemble de la communauté des atomes plutôt que parmi les particules individuelles.

Suppression du décalage Doppler

En utilisant cette nouvelle méthode de contrôle, les chercheurs ont découvert qu’ils pouvaient également utiliser ce système d’atténuation de la rétrodiffusion pour aider à atténuer un problème de mesure distinct : le décalage Doppler.

Le décalage Doppler, un phénomène de la physique classique, explique pourquoi une sirène ou un klaxon de train change de tonalité lorsqu’il passe devant l’auditeur ou pourquoi certaines étoiles apparaissent rouges ou bleues sur les photographies du ciel nocturne. Il s’agit du changement de fréquence de l’onde lorsqu’elle passe par l’auditeur. La source et l’observateur se rapprochent (ou s’éloignent) l’un de l’autre. En physique quantique, le décalage Doppler décrit le changement d’énergie d’une particule dû au mouvement relatif.

READ  La préservation tridimensionnelle des tissus mous des trilobites met en lumière l’évolution convergente de l’enregistrement défensif

Pour des chercheurs comme Lu, le décalage Doppler peut être un défi à surmonter pour obtenir une mesure précise. « Lorsque les photons sont absorbés, le rebond atomique entraînera un décalage Doppler de la fréquence des photons, ce qui constitue un gros problème lorsque l’on parle de spectroscopie précise », a-t-il expliqué. En simulant leur nouvelle méthode, les chercheurs ont découvert qu’ils pouvaient surmonter les biais de mesure dus au décalage Doppler.

Enchevêtrement des échanges d’élan

Les chercheurs ont également découvert que l’échange de quantité de mouvement entre ces atomes peut être utilisé comme une forme d’intrication quantique. Comme l’explique John Wilson, un étudiant diplômé du groupe de Holland : « Lorsqu’un atome tombe, son mouvement vibre à la fréquence de la cavité, ce qui encourage les autres atomes à ressentir collectivement le mécanisme de rétroaction et les incite à corréler son mouvement à travers des oscillations partagées. »

Pour tester davantage cet « enchevêtrement », les chercheurs ont créé une plus grande séparation entre les états de quantité de mouvement des atomes, puis ont catalysé l’échange de quantité de mouvement. Les chercheurs ont découvert que les atomes continuaient à se comporter comme s’ils étaient connectés. « Cela suggère que les deux états d’impulsion oscillent l’un par rapport à l’autre comme s’ils étaient reliés par un ressort », a ajouté Luo.

En ce qui concerne l’avenir, les chercheurs prévoient d’explorer davantage cette nouvelle forme d’intrication quantique, dans l’espoir de mieux comprendre comment elle peut être utilisée pour améliorer différents types de dispositifs quantiques.

Référence : « Les interactions d’échange d’impulsion dans l’interféromètre atomique de Bragg empêchent le décalage Doppler » par Chengyi Lu, Haoqing Zhang, Vanessa B. W. Koh et John D. Wilson, Angjun Chu, Murray J. Holland, Anna Maria Rhee et James K. Thompson, le 2 mai 2024, les sciences.
est ce que je: 10.1126/science.adi1393

Cette recherche a été soutenue par le Département américain de l’énergie, l’Office of Science, les Centres nationaux de recherche en sciences de l’information quantique et le Quantum Systems Accelerator.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Un concept de fusée à plasma pulsé financé par la NASA vise à envoyer des astronautes sur Mars d’ici deux mois

Published

on

Un concept de fusée à plasma pulsé financé par la NASA vise à envoyer des astronautes sur Mars d’ici deux mois

Un système de fusée innovant pourrait révolutionner les futures missions spatiales lointaines vers Mars, en réduisant leur nombre temps de voyage Sur la Planète Rouge pour quelques mois seulement.

L’objectif de faire atterrir des humains sur Mars a présenté une myriade de défis, notamment la nécessité de transporter rapidement de grosses charges utiles vers et depuis la planète lointaine, ce qui, selon l’emplacement de la Terre et de Mars, prendrait environ deux ans pour un aller-retour en utilisant technologie de propulsion actuelle.

Continue Reading

science

Les scientifiques pensent avoir découvert la source des « circuits radio individuels »

Published

on

Les scientifiques pensent avoir découvert la source des « circuits radio individuels »

Au cours des cinq dernières années, les astronomes ont découvert un nouveau type de phénomène astronomique qui existe à grande échelle, plus grande que des galaxies entières. Appelés ORC (circuits radio individuels), ils ressemblent à des anneaux géants d’ondes radio s’étendant vers l’extérieur comme une onde de choc.

Jusqu’à présent, les ORC n’ont jamais été observés à d’autres longueurs d’onde que la radio, mais selon une nouvelle… papier Libérés le 30 avril 2024, les astronomes ont capturé pour la première fois des rayons X associés à ORC.

Cette découverte fournit de nouveaux indices sur ce qui pourrait se cacher derrière la création de l’ORC.

Alors que de nombreux événements astronomiques, tels que les explosions de supernova, peuvent laisser des restes circulaires, les ORC semblent nécessiter une explication différente.

« L’énergie nécessaire pour produire une émission radio aussi étendue est très puissante », a déclaré Israa Bulbul, auteur principal de la nouvelle recherche. « Certaines simulations peuvent reproduire leurs formes mais pas leurs densités. Aucune simulation n’explique comment les ORC sont créés. »

Les ORC peuvent être difficiles à étudier, en partie parce qu’ils ne sont généralement visibles qu’aux longueurs d’onde radio. Ils n’ont jamais été associés à des émissions de rayons X ou d’infrarouges, et il n’y a aucun signe d’eux aux longueurs d’onde optiques.

Parfois, les ORC entourent une galaxie visible, mais pas toujours (huit ont été découverts jusqu’à présent autour de galaxies elliptiques connues).

À l’aide du télescope XMM-Newton de l’ESA, Bulbul et son équipe ont observé l’un des ORC connus les plus proches, un objet appelé Cloverleaf, et ont découvert une composante de rayons X frappante de cet objet.

READ  La préservation tridimensionnelle des tissus mous des trilobites met en lumière l’évolution convergente de l’enregistrement défensif
Cette image multi-longueurs d’onde de l’ORC Cloverleaf (circuit radio unique) combine les observations de lumière visible de l’ancienne enquête DESI (Dark Energy Spectral Analyser) en blanc et jaune, les rayons X de XMM-Newton en bleu et la radio d’ASKAP (Australien). Carré) Matrice de kilomètres Pathfinder) en rouge. (X. Zhang et M. Kluge/MPE/B. Koribalski/CSIRO)

« C’est la première fois que quelqu’un voit l’émission de rayons X associée à un ORC », a déclaré Bulbul. « C’était la clé manquante pour percer le secret de la Formation Cloverleaf. »

Une radiographie d’une feuille de trèfle montre un gaz qui a été chauffé et déplacé par un processus. Dans ce cas, les émissions de rayons X révèlent deux amas de galaxies (environ une douzaine de galaxies au total) qui ont commencé à fusionner à l’intérieur de la feuille de trèfle, chauffant le gaz à 15 millions de degrés Fahrenheit.

Les fusions chaotiques de galaxies sont intéressantes, mais elles ne peuvent pas expliquer à elles seules une feuille de trèfle. Les fusions de galaxies se produisent dans tout l’univers, tandis que les ORC sont un phénomène rare. Il y a quelque chose d’unique qui se passe pour créer quelque chose comme Cloverleaf.

« Les processus de fusion constituent l’épine dorsale de la formation de la structure, mais il y a quelque chose de spécial dans ce système qui déclenche l’émission radio », a déclaré Bulbul. « Nous ne pouvons pas savoir de quoi il s’agit pour l’instant, nous avons donc besoin de données plus nombreuses et plus approfondies provenant à la fois des radiotélescopes et des télescopes à rayons X. »

Cela ne veut pas dire que les astronomes n’ont aucune idée.

« Un aperçu fascinant du signal radio puissant est que les trous noirs supermassifs résidents ont connu des épisodes d’activité intense dans le passé et que les électrons restants de cette activité ancienne ont été réaccélérés par cet événement de fusion », a déclaré Kim Weaver, scientifique du projet de la NASA, à XMM. -Newton.

READ  Des fossiles d'énormes animaux marins découverts dans les Alpes suisses

En d’autres termes, les ORC comme Cloverleaf peuvent nécessiter une histoire d’origine en deux parties : de puissantes émissions provenant de trous noirs actifs et supermassifs, suivies d’ondes de choc de fusion de galaxies qui donnent un deuxième coup de pouce à ces émissions.

Cet article a été initialement publié par L’univers aujourd’hui. est en train de lire Article original.

Continue Reading

science

Pratique de l’équipe Lava World Away : l’équipe scientifique VERITAS de la NASA étudie l’Islande volcanique

Published

on

Pratique de l’équipe Lava World Away : l’équipe scientifique VERITAS de la NASA étudie l’Islande volcanique

Un exemple de données radar aéroportées du DLR montre un changement d’altitude de plusieurs dizaines de mètres autour du volcan volcaniquement actif Litli-Hrútur causé par la formation de nouvelles roches. Le rouge indique la plus grande quantité de changement ; Bleu, au moins. Crédits : DLR

Avec sa pression atmosphérique écrasante, ses nuages ​​d’acide sulfurique et sa température de surface torride, Vénus est un endroit particulièrement difficile à étudier. Mais les scientifiques savent que l’observation de sa surface peut fournir des informations clés sur l’habitabilité et l’évolution de planètes rocheuses comme la nôtre. Ainsi, pour avoir une perspective globale sur Vénus tout en restant au-dessus de son atmosphère infernale, la mission VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy) de la NASA devrait être lancée d’ici une décennie pour étudier la surface de la planète depuis l’orbite et découvrir des preuves. . À propos de sa nature intérieure.

Pour jeter les bases de la mission, les membres internationaux Vérité, honnêteté L’équipe scientifique s’est rendue en Islande pour une expédition de deux semaines en août afin d’utiliser l’île volcanique comme substitut ou analogue de Vénus. Les emplacements sur notre planète sont souvent utilisés comme analogies avec d’autres planètes, notamment pour aider à mettre en place des technologies et des technologies destinées à des environnements peu attractifs.

« L’Islande est un pays volcanique situé au sommet d’un panache chaud. Vénus est une planète volcanique et possède de nombreuses preuves géologiques de panaches actifs », a déclaré Susan Smrekar, chercheuse scientifique principale au Jet Propulsion Laboratory de la NASA en Californie du Sud et chercheuse principale au sein du Jet Propulsion Laboratory de la NASA. Veritas. « Cela fait de l’Islande un excellent endroit pour étudier Vénus sur Terre, aidant ainsi l’équipe scientifique à se préparer pour Vénus. »

La mission Veritas s’appuiera sur un radar avancé à synthèse d’ouverture pour créer des cartes globales 3D et une spectroscopie proche infrarouge afin de distinguer les principaux types de roches à la surface de Vénus. Mais pour mieux comprendre ce que le radar du vaisseau spatial verra sur la planète, l’équipe scientifique de Veritas devra comparer les observations radar du terrain islandais depuis les airs avec les mesures prises au sol.

READ  La préservation tridimensionnelle des tissus mous des trilobites met en lumière l’évolution convergente de l’enregistrement défensif

De l’air au sol

Au cours de la première moitié de la campagne, l’équipe scientifique de Veritas a étudié les gisements volcaniques d’Askja et Champ de lave d’Holohraun Dans les hautes terres islandaises, zone active caractérisée par de petits rochers et de jeunes coulées de lave. En seconde période, ils se sont rendus à l’activité volcanique Région de Fagradalsfjall Sur la péninsule de Reykjanes, au sud-ouest de l’Islande. Le paysage aride et rocheux ressemble à la surface de Vénus, qui aurait été rajeunie par des volcans actifs.

Dix-neuf scientifiques des États-Unis, d’Allemagne, d’Italie et d’Islande ont campé et travaillé de longues heures pour étudier la rugosité de la surface et d’autres propriétés des roches dans ces régions, ainsi que pour collecter des échantillons de laboratoire. Pendant ce temps, des vols dirigés par le Centre aérospatial allemand (Deutsches Zentrum für Luft- und Raumfahrt, ou DLR) collectaient des données radar d’en haut.

Les membres de l’équipe scientifique VERITAS descendent une falaise sur une nouvelle roche formée par une récente coulée de lave lors de leur expédition sur le terrain en Islande début août. L’équipe a utilisé le paysage volcanique comme analogue de Vénus pour tester les techniques et la technologie radar. Source de l’image : NASA/JPL-Caltech

« L’équipe scientifique dirigée par le JPL travaillait sur le terrain pendant que nos partenaires du Centre aérospatial allemand survolaient les lieux pour collecter des images radar aériennes des sites que nous étudiions », a déclaré Daniel Nunes, scientifique adjoint du projet Veritas au JPL et responsable de l’Islande. planification de campagne. « La luminosité radar d’une surface est liée aux propriétés de cette surface, notamment sa texture, sa rugosité et sa teneur en eau. Nous avons collecté des informations sur le terrain pour vérifier les données radar que nous utiliserons pour informer la science sur ce que VERITAS fera sur Vénus. « 

READ  Comment le télescope Webb nous montrera des planètes jamais vues auparavant

Alors qu’il pilotait un avion Dornier 228-212 du Centre aérospatial allemand (DLR) à une altitude d’environ 20 000 pieds (6 000 m) au-dessus du sol, un radar à synthèse d’ouverture en bande S (ondes radio d’une longueur d’onde d’environ 12 centimètres, ou 4,7 pouces) collectés) et la plage X (environ 3 centimètres (ou 1,2 pouces)) des données. La longueur d’onde plus courte des données en bande X – la fréquence radio utilisée par VERITAS – permet l’utilisation d’une antenne plus compacte que la bande S, utilisée par la mission Magellan de la NASA pour cartographier la quasi-totalité de la surface de Vénus au début des années 1990.

En observant la surface dans les deux chaînes d’Islande, l’équipe scientifique améliorera les algorithmes informatiques qui aideront Veritas à déterminer les changements de surface sur Vénus survenus depuis la mission Magellan. La détection des changements survenus au cours des 40 dernières années leur permettra d’identifier les principales zones d’activité géologique (telles que les volcans actifs) sur Vénus.

Les membres de l’équipe scientifique internationale VERITAS se préparent à imager des roches en Islande avec LIDAR (Light Detection and Ranging). Les mesures LiDAR de terrains rocheux peuvent fournir des informations sur le matériau. Source de l’image : NASA/JPL-Caltech

L’objectif principal de la campagne était également de créer une bibliothèque de modèles d’autant de tissus volcaniques de surface en Islande que possible afin de mieux comprendre l’éventail des modèles d’éruption sur Vénus. Une équipe de terrain du Centre aérospatial allemand (DLR) a également collecté des informations sur la composition à l’aide d’une caméra simulant l’instrument Venus Emission Mapper (VEM) que le DLR est en train de construire pour VERITAS. Ces données soutiendront la bibliothèque spectrale en cours de construction au Laboratoire de spectroscopie planétaire de Berlin.

READ  Explication : Comment les astronomes ont découvert un objet spatial inhabituel qui transmet des signaux radio périodiques

« Les diverses caractéristiques et caractéristiques de la surface observées sur Vénus sont liées aux processus volcaniques, qui sont liés à l’intérieur de Vénus », a déclaré Smrekar. « Ces données seront précieuses pour VERITAS pour nous aider à mieux comprendre Vénus. Elles aideront également la mission EnVision de l’ESA, qui étudiera la surface de Vénus à l’aide d’un radar en bande S, ainsi que la communauté dans son ensemble qui souhaite comprendre les observations radar des planètes volcaniques. surfaces. »

Mais Nunes a déclaré que la valeur de la campagne islandaise de deux semaines allait au-delà de la science, offrant une opportunité de consolidation d’équipe qui trouvera un écho dans les années à venir. « C’était une belle dynamique », a-t-il ajouté. « Nous avons travaillé dur et nous nous sommes entraidés, qu’il s’agisse d’emprunter du matériel, de nous rendre sur les sites d’étude ou d’acheter des fournitures, tout le monde s’est mobilisé pour y parvenir.

À l’aide d’un scanner lidar monté sur un trépied, l’équipe scientifique a créé cette image qui met en évidence la texture rocheuse de nouvelles roches formées à partir d’une récente coulée de lave près du volcan Litli-Hrútur en Islande. Ceci sera utilisé pour comparer avec les images radar aéroportées de la même zone. Source : NASA/JPL-Caltech

En savoir plus sur la mission

La mission VERITAS et la mission 2021 Deep Venus Atmospheric Investigation of Noble Gases, Chemistry, and Imaging (DAVINCI) de la NASA dans le cadre du programme d’exploration de la NASA ont été sélectionnées comme les deux prochaines missions de l’agence vers Vénus. Les partenaires de VERITAS comprennent Lockheed Martin Space, l’Agence spatiale italienne, le DLR et le Centre national d’études spatiales en France. Le programme Discovery est géré par le bureau du programme des missions planétaires du Marshall Space Flight Center de la NASA à Huntsville, en Alabama, pour la division des sciences planétaires de la direction des missions scientifiques de la NASA à Washington.

Astrobiologie

Continue Reading

Trending

Copyright © 2023