Connect with us

science

De nouveaux matériaux exotiques pourraient être deux supraconducteurs en un – avec de sérieuses applications en informatique quantique

Published

on

par

Le travail a des applications potentielles dans Statistiques quantitativeset offre une nouvelle façon de révéler les secrets de la supraconductivité.

Avec Des physiciens et collègues ont démontré une étrange forme de supraconductivité dans un nouveau matériau que l’équipe a fabriqué il y a à peine un an. Bien que prévu dans les années 1960, ce type de supraconductivité s’est jusqu’à présent avéré difficile à stabiliser. De plus, les scientifiques ont découvert que le même matériau peut être manipulé pour afficher une autre forme tout aussi exotique de supraconductivité.

Le travail a été rapporté dans le numéro du 3 novembre 2021 du magazine tempérer la nature.

La démonstration de la supraconductivité à impulsion finie dans un cristal en couches connu sous le nom de super-réseau naturel signifie que le matériau peut être modifié pour créer différents modèles de supraconductivité dans le même échantillon. Ceci, à son tour, pourrait avoir des implications pour l’informatique quantique et plus encore.

Le matériau devrait également devenir un outil important pour percer les secrets des supraconducteurs non conventionnels. Cela peut être utile pour les nouvelles technologies quantiques. Concevoir de telles techniques est difficile, en partie à cause de la difficulté d’étudier les matériaux qui les composent. Le nouveau matériel pourrait simplifier ces recherches car, entre autres, il est relativement facile à réaliser.

Trois styles différents de supraconductivité

Diagramme montrant trois modes différents de supraconductivité obtenus dans un nouveau matériau synthétisé au MIT. Crédit : Image reproduite avec l’aimable autorisation de Checkelsky Lab

« L’un des sujets importants de nos recherches est que la nouvelle physique provient de nouveaux matériaux », explique Josef Chikilsky, chercheur principal sur le travail et professeur agrégé de physique dans le développement de carrière à Mitsui. Notre rapport initial portait l’an dernier sur cette nouvelle substance. Ce nouveau travail rappelle une nouvelle physique. »

Les co-auteurs de Checkelsky sur l’article actuel incluent l’auteur principal Aravind Devarakonda PhD ’21, qui est maintenant en Université de Columbia. Le travail était une partie essentielle de la thèse de Devarakonda. Les co-auteurs sont Takehito Suzuki, un ancien chercheur au MIT, aujourd’hui Toho University au Japon ; Xiang Fang, chercheur postdoctoral au Département de physique du Massachusetts Institute of Technology. Junpo Chu, étudiant diplômé en physique au Massachusetts Institute of Technology ; David Graf du Laboratoire national de champ magnétique élevé ; Markus Kreiner du RIKEN Center for Emerging Materials Science au Japon ; Liang Fu, professeur adjoint de physique au Massachusetts Institute of Technology ; Euphthymus Cacceiras de l’Université Harvard.

READ  Une étude révèle des différences surprenantes dans le cerveau des humains modernes et des Néandertaliens | Néandertaliens

Nouveau matériau quantique

La physique classique peut être utilisée pour expliquer un certain nombre de phénomènes qui sous-tendent notre monde – jusqu’à ce que les choses deviennent adorablement petites. Les particules subatomiques telles que les électrons et les quarks se comportent différemment, de manières encore mal comprises. Entrez dans la mécanique quantique, le domaine qui tente d’expliquer leur comportement et les effets qui en résultent.

Checkelsky et ses collègues ont découvert un nouveau matériau quantique, ou un matériau qui présente les propriétés particulières de la mécanique quantique à l’échelle microscopique. Dans ce cas, le matériau en question est un supraconducteur.

Récemment, explique Checkelsky, il y a eu un boom dans la réalisation de supraconducteurs spéciaux qui sont bidimensionnels, ou juste quelques couches atomiques d’épaisseur. Ces nouveaux supraconducteurs minces sont importants en partie parce qu’ils devraient donner un aperçu de la supraconductivité elle-même.

Mais il y a des défis. Par exemple, les matériaux d’une épaisseur ne dépassant pas quelques couches atomiques sont difficiles à étudier car ils sont très sensibles. Pourrait-il y avoir une autre approche pour sonder leurs secrets ?

Le nouveau matériau fabriqué par Checkelsky et ses collègues peut être considéré comme l’équivalent supraconducteur d’un couche de gâteau, où une couche est une couche ultra-mince d’un matériau supraconducteur, et la suivante est une couche d’espacement super-mince qui la protège. L’empilement de ces couches les unes sur les autres donne un gros cristal (cela se produit naturellement lorsque les éléments constitutifs soufre, niobium et baryum sont chauffés ensemble). « Et ce cristal macroscopique, que je peux tenir dans ma main, se comporte comme un supraconducteur bidimensionnel. C’était tellement incroyable », dit Czekelski.

READ  SpaceX est en passe de battre des records de lancement américains. à plusieurs reprises

De nombreux capteurs que les scientifiques utilisent pour étudier les supraconducteurs bidimensionnels sont difficiles à utiliser sur des matériaux atomiquement minces. Étant donné que le nouveau matériau est trop grand, « nous avons maintenant de nombreux outils [to characterize it] », dit Chikilsky. En effet, pour les travaux présentés dans le présent article, les scientifiques ont utilisé une technique qui nécessitait d’énormes échantillons.

Des supraconducteurs étranges

Le supraconducteur transporte la charge d’une manière spéciale. Au lieu d’un seul électron, deux électrons liés ensemble portent la charge dans ce qu’on appelle la paire de Cooper. Cependant, tous les supraconducteurs ne sont pas identiques. Certaines formes inhabituelles de supraconductivité ne peuvent apparaître que lorsque les paires de Cooper se déplacent sans entrave à travers la matière sur des distances relativement longues. Plus la distance est longue, plus le matériau sera « propre ».

Le matériel de l’équipe Checkelsky est très propre. En conséquence, les physiciens étaient impatients de voir s’il pouvait montrer l’état inhabituel de la supraconductivité, ce qu’il fait. Dans le présent article, l’équipe démontre que leur nouveau matériau est un supraconducteur à impulsion finie lorsqu’un champ magnétique est appliqué. Ce type particulier de supraconductivité, qui a été proposé dans les années 1960, est resté un aimant pour les scientifiques.

Aravind Deverakounda

Aravind Devarakonda PhD ’21 est l’auteur principal d’un article de recherche décrivant une forme particulière de supraconductivité. Crédit : Dennis Paest

Alors que la supraconductivité est généralement détruite par des champs magnétiques modestes, un supraconducteur à impulsion finie peut persister davantage en formant un motif régulier de régions avec beaucoup de paires de Cooper et de régions sans. Il s’avère que ce type de supraconducteur peut être manipulé pour former une variété de motifs inhabituels lorsque les paires de Cooper se déplacent entre des orbitales de mécanique quantique connues sous le nom de niveaux de Landau. Cela signifie, dit Chikilsky, que les scientifiques devraient désormais être en mesure de créer différents modèles de supraconductivité dans le même matériau.

READ  Ce robot sous-marin explore les secrets de l'activité climatique de nos océans

« C’est une expérience incroyable capable de démontrer le mouvement des paires de Cooper entre les niveaux de Landau dans un supraconducteur, quelque chose qui n’a jamais été observé auparavant. Honnêtement, je ne m’attendais pas à voir cela dans un cristal que vous pouvez tenir dans votre main, donc cela est très excitant. Pour observer cet effet insaisissable, les auteurs doivent effectuer des mesures minutieuses et de haute précision sur un supraconducteur bidimensionnel unique qu’ils ont découvert précédemment. C’est une réalisation remarquable, non seulement en termes de difficulté technique, mais aussi en termes d’intelligence, dit Kyle Sheen, professeur de physique à l’Université Cornell.

De plus, les physiciens ont réalisé que leur matériau contenait également des composants d’un autre type exotique de supraconductivité. La supraconductivité topologique implique le mouvement de la charge le long des bords ou des frontières. Dans ce cas, cette charge peut voyager le long des bords de chaque motif supraconducteur interne.

L’équipe de Checkelsky travaille actuellement pour voir si leur matériau est effectivement capable de supraconductivité topologique. Si tel est le cas,  » Pouvons-nous combiner les deux nouveaux types de supraconductivité ? Qu’est-ce que cela pourrait apporter ? « , demande Chekelsky.

Il conclut que « la réalisation de ce nouveau matériel a été très intéressante ». « Au fur et à mesure que nous comprenions mieux ce qu’il pouvait faire, il y a eu un certain nombre de surprises. C’est vraiment excitant quand de nouvelles choses arrivent auxquelles nous ne nous attendons pas. »

Référence : « Empreintes digitales des niveaux bosoniens de Landau dans un supraconducteur à impulsion finie » par A. 3 novembre 2021, tempérer la nature.
DOI : 10.1038 / s41586-021-03915-3

Ce travail a été soutenu par la Gordon and Betty Moore Foundation, l’Office of Naval Research, le US Department of Energy (DOE) Office of Science, la National Science Foundation (NSF) et le Rutgers Center for Material Theory.

Les calculs ont été faits à l’Université de Harvard. D’autres parties du travail ont été effectuées au National High Magnetic Field Laboratory, qui est soutenu par la NSF, l’État de Floride et le ministère de l’Énergie.

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La station spatiale chinoise a été impliquée dans un accident spatial

Published

on

La station spatiale chinoise a été impliquée dans un accident spatial
La Station spatiale chinoise Tiangong vue d'en haut.
La Station spatiale chinoise Tiangong vue d'en haut. CMSA

Les membres de l'équipage à bord de la station spatiale chinoise ont terminé avec succès les réparations après que des débris ont provoqué une panne de courant partielle dans l'installation, ont révélé mercredi des responsables de l'Agence chinoise pour l'espace habité (CMSA) lors d'une conférence de presse.

Les débris spatiaux ont heurté les câbles d'alimentation reliés aux ailes solaires du module central et ont été réparés par les astronautes lors de deux sorties dans l'espace à la station spatiale Tiangong, la plus récente au début du mois dernier.

L'équipage devrait revenir sur Terre le 30 avril après que les opérations de la station auront été transférées à l'équipage entrant de Shenzhou-18. Les médias d'État ont rapporté.

La CMSA s'efforce d'améliorer les procédures d'avertissement et d'évitement des collisions spatiales et a réduit le taux de fausses alarmes de 30 %, ont indiqué des responsables de l'agence. Dans le cadre d'une autre mesure visant à améliorer la sécurité, la caméra haute définition installée sur le bras robotique de Tiangong, ainsi que les caméras portables utilisées par les astronautes lors des sorties dans l'espace, seront utilisées pour examiner attentivement l'état de l'extérieur de la station afin de vérifier et d'analyser toute frappe. Mécanisme d'impact de petits débris.

La station spatiale chinoise orbite à environ 280 milles au-dessus de la Terre et à environ 30 milles au-dessus de la Station spatiale internationale. Cela place les deux installations en orbite proche de la Terre, là où se trouvent la plupart des déchets spatiaux dangereux.

READ  Le télescope Webb espionne les étoiles cachées dans un cimetière stellaire

Les débris spatiaux sont constitués de satellites déclassés, de parties de fusées usées et d'un grand nombre de petits fragments résultant de collisions aléatoires impliquant ces objets. Ils voyagent autour de la Terre à une vitesse fulgurante et toute frappe sur l’une ou l’autre station spatiale peut potentiellement causer des dégâts considérables.

Les opérateurs des deux installations orbitales disposent de systèmes pour surveiller les déchets les plus gros, et si l'un d'entre eux est considéré comme étant sur le point d'entrer en collision avec une station, l'installation est déplacée vers une orbite supérieure ou inférieure pour l'éviter.

Lors d'un incident dramatique survenu en 2021, les membres de l'équipage à bord de la Station spatiale internationale ont reçu l'ordre de se réfugier dans leur vaisseau spatial lorsqu'un nuage de débris spatiaux dangereux – créé par un essai antimissile russe qui a détruit un vieux satellite – s'est approché de manière alarmante de la station. . Heureusement, la Station spatiale internationale a pu éviter tout dommage et l'équipage a été autorisé à reprendre ses fonctions normales.

Alors que de plus en plus de déchets spatiaux apparaissent constamment, un certain nombre d'entreprises explorent différentes façons de les éliminer afin de rendre les opérations en orbite proche de la Terre plus sûres, non seulement pour les stations spatiales, mais également pour les satellites opérationnels qui alimentent les services vitaux sur Terre. .

Recommandations des rédacteurs




Continue Reading

science

L'enzyme forme des complexes avec des géométries fractales

Published

on

L'enzyme forme des complexes avec des géométries fractales

Les chercheurs ont identifié une enzyme capable de s’assembler en complexes aux géométries fractales. Les fractales – des modèles hiérarchiques dans lesquels des caractéristiques structurelles à des échelles plus grandes sont répétées à des échelles plus petites – sont bien connues au niveau macroscopique, mais on n'a pas encore observé qu'elles se formaient spontanément à partir de molécules biologiques au niveau moléculaire dans des cellules ou in vitro.

Maintenant, George K. une. Hochberg de l'Institut Max Planck de microbiologie terrestre et de l'Université Philips de Marburg, Jan M. Schuller de l'Université Philips de Marburg et leurs collègues ont découvert que l'enzyme citrate synthase extraite des cyanobactéries Staphylocoque long Les complexes se forment selon un motif fractal appelé triangle de Sierpiński (nature 2024, identification numérique : 10.1038/s41586-024-07287-2). Les triangles de Sierpiński sont constitués de petits triangles équilatéraux imbriqués dans des triangles équilatéraux plus grands.

Forme motivationnelle de S. rectangle La citrate synthase est l'hexadécane. Ces hexamères peuvent s'assembler en triangles de Sierpiński avec 18 ou 54 copies de la protéine (3 ou 9 hexamères). Pour former des fractales, l’enzyme tourne dans le sens opposé à celui dans lequel elle tourne pour lier le substrat pendant la catalyse. Les fractales « corrigent quelque chose d’une manière qui rend la stimulation difficile », explique Hochberg.

L’enzyme ne forme ces structures plus grandes que la nuit, lorsque le pH des cyanobactéries est approximativement neutre. « Il est possible que cette chose soit un accident inoffensif, car elle ne crée cette structure folle qu'à un moment de la journée où vous n'avez de toute façon pas besoin de l'enzyme », explique Hochberg. Le 18-mer se forme à des concentrations si faibles que Hochberg est convaincu qu’il est présent dans les cellules. Il pense que le 54-mer ne s’est peut-être pas formé physiologiquement.

READ  DeepMind n'est pas d'accord avec les scientifiques russes sur la recherche en IA quantique

Les chercheurs ont utilisé la reconstruction de la protéine ancestrale pour étudier comment l’enzyme a développé sa capacité à former des fractales. L'acide glutamique et l'histidine nécessaires à l'interface de formation des fractales étaient présents dans des protéines ancestrales qui ne formaient pas de fractales. Le remplacement de la glutamine par la leucine a supprimé l’interaction qui empêchait la formation fractale. Ce changement les a incités à se rassembler.

« C'est étrange d'un point de vue évolutionniste », dit Hochberg. « Ce que cela signifie, c'est que tous les liens positifs qui unissent cette chose étaient déjà là. »

« C'est un excellent exemple de la façon dont les caprices de l'évolution peuvent conduire à la formation de structures qui seraient autrement difficiles à réaliser grâce à la conception de protéines, car les contacts interfaciaux, les conflits stériques et la flexibilité angulaire doivent être programmés dans une hiérarchie de facteurs non covalents. interactions », a écrit François Panix, qui a conçu des matériaux contenant la protéine On à l’Université de Washington, a déclaré dans un e-mail : « Un seul élément constitutif est exposé lorsqu’il s’assemble en une fractale. »

L'élimination de la capacité de l'enzyme à former des fractales n'a eu aucun effet notable sur les cellules, explique Hochberg. « Il est si facile de produire ces choses pour l'évolution en une seule étape mutationnelle, que nous devrions en fait nous attendre à ce que cela se produise parfois par hasard », dit-il. Si quelqu'un découvre un assemblage étrange similaire dans un autre organisme, il pourrait se demander s'il ne s'agit que d'un accident inoffensif, explique Hochberg.

READ  D'où vient l'eau de la Terre ?

Continue Reading

science

Des astronomes ont découvert des « embouteillages » de trous noirs dans les centres galactiques

Published

on

Des astronomes ont découvert des « embouteillages » de trous noirs dans les centres galactiques

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture

Couple normal individuel de M = 107M problème. Les lignes noires montrent le couple de type I ainsi que le couple GW. Les lignes violettes représentent le couple thermique, tandis que les lignes bleues représentent le couple total. Panneau de gauche : couple tracé dans l’espace R. Panneau de droite : couple tracé dans l’espace τ. Les lignes verticales pointillées indiquent τ± (vert) et τ0 (rouge), endroits où des pièges migratoires sont susceptibles de se produire. crédit: Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae828

× Fermer

Couple normal individuel de M = 107M problème. Les lignes noires montrent le couple de type I ainsi que le couple GW. Les lignes violettes représentent le couple thermique, tandis que les lignes bleues représentent le couple total. Panneau de gauche : couple tracé dans l’espace R. Panneau de droite : couple tracé dans l’espace τ. Les lignes verticales pointillées indiquent τ± (vert) et τ0 (rouge), endroits où des pièges migratoires sont susceptibles de se produire. crédit: Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae828

Une étude internationale, dirigée par des chercheurs de l'Université Monash, a révélé des informations importantes sur la dynamique des trous noirs au sein des disques massifs situés au centre des galaxies.

Publié dans Avis mensuels de la Royal Astronomical Society, l'étude Il montre les processus complexes qui déterminent quand et où les trous noirs ralentissent et interagissent les uns avec les autres, conduisant potentiellement à des fusions.

Les résultats de l’étude mettent en évidence les émissions d’ondes gravitationnelles (GW) provenant de la fusion des trous noirs, événements qui peuvent être détectés par des instruments tels que le Laser Gravitational Wave Observatory (LIGO).

Lorsque deux trous noirs se rapprochent trop, ils perturbent l’espace-temps lui-même, émettant des ondes gravitationnelles avant de finalement fusionner en un seul trou.

Le Dr Evgeny Grishin, chercheur postdoctoral à l'École de physique et d'astronomie de l'Université Monash qui a dirigé l'étude, a comparé le phénomène à une intersection très fréquentée sans feux de signalisation fonctionnels.

« Nous avons examiné combien et où nous aurions ces intersections très fréquentées », a déclaré le Dr Grishin.

La recherche s'est concentrée sur les centres des galaxies, où les trous noirs peuvent fusionner plusieurs fois en raison de l'énorme force gravitationnelle du trou noir supermassif situé au centre.

De plus, la présence d’un disque d’accrétion massif de gaz contribue à la luminosité de ces galaxies, les classant parmi les noyaux galactiques actifs (AGN).

L'interaction entre les trous noirs plus petits et le gaz environnant les fait migrer à l'intérieur du disque, s'accumulant dans des régions appelées pièges à migration. Ces pièges augmentent la possibilité de collisions rapprochées entre trous noirs, pouvant conduire à des fusions.

« Les effets thermiques jouent un rôle crucial dans ce processus, affectant l'emplacement et la stabilité des pièges migratoires. Cela implique notamment que nous ne voyons pas de pièges migratoires se produire dans les galaxies actives à grande luminosité », a déclaré le Dr Grishin.

Les résultats de l’étude font progresser notre compréhension des fusions de trous noirs et ont des implications plus larges pour l’astronomie des ondes gravitationnelles, l’astrophysique des hautes énergies, l’évolution des galaxies et la rétroaction des noyaux galactiques actifs.

« Malgré ces découvertes importantes, beaucoup de choses sur la physique des trous noirs et de leurs environnements restent inconnues », a déclaré le Dr Grishin. « Nous sommes satisfaits des résultats et nous sommes désormais sur le point de découvrir où et comment les trous noirs fusionnent dans les noyaux galactiques.

« L’avenir de l’astronomie des ondes gravitationnelles et de la recherche sur les noyaux galactiques actifs est exceptionnellement prometteur. »

Plus d'information:
Evgeny Grishin et al., Effet du couple thermique sur les pièges de migration des disques AGN et les amas d'ondes gravitationnelles, Avis mensuels de la Royal Astronomical Society (2024). est ce que je: 10.1093/mnras/stae828

Informations sur les magazines :
Avis mensuels de la Royal Astronomical Society


READ  Les scientifiques utilisent le peroxyde pour observer les réactions des oxydes métalliques
Continue Reading

Trending

Copyright © 2023