Connect with us

science

Découvrez les télescopes infrarouges qui ont ouvert la voie au télescope Webb de la NASA

Published

on

Découvrez les télescopes infrarouges qui ont ouvert la voie au télescope Webb de la NASA

Cet article a été révisé selon Science Processus d'édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

source fiable

Relecture

Les nuages ​​​​de gaz et de poussière dans l’espace – comme Rho Ophiuchi montré ici – émettent principalement de la lumière infrarouge, que l’œil humain ne peut pas détecter. IRAS, le premier télescope infrarouge en orbite terrestre, a photographié la région en 1983 et a révélé des caractéristiques auparavant cachées, notamment de nouvelles étoiles en formation situées au plus profond de la poussière. Crédit : NASA

× Fermer

Les nuages ​​​​de gaz et de poussière dans l’espace – comme Rho Ophiuchi montré ici – émettent principalement de la lumière infrarouge, que l’œil humain ne peut pas détecter. IRAS, le premier télescope infrarouge en orbite terrestre, a photographié la région en 1983 et a révélé des caractéristiques auparavant cachées, notamment de nouvelles étoiles en formation situées au plus profond de la poussière. Crédit : NASA

Le télescope Webb a ouvert une nouvelle fenêtre sur l'univers, mais il s'appuie sur des missions vieilles de 40 ans, dont Spitzer et le satellite astronomique infrarouge.

Le 25 décembre, la NASA célébrera le deuxième anniversaire du lancement du télescope spatial James Webb, l'observatoire spatial le plus grand et le plus puissant de l'histoire. La clarté de ses images a inspiré le monde entier, et les scientifiques commencent tout juste à explorer les bienfaits scientifiques qu’elle apporte.

Le succès de Webb s'appuie sur quatre décennies de télescopes spatiaux qui détectent également la lumière infrarouge (qui est invisible à l'œil nu) – notamment le travail de deux télescopes retraités de la NASA qui ont célébré de grands anniversaires l'année dernière : janvier a marqué le 40e anniversaire du lancement du télescope. Satellite astronomique infrarouge (IRAS), tandis qu'en août marquait le 20e anniversaire du lancement du télescope spatial Spitzer.

Cet héritage est clairement visible sur les images de la NASA de Rho Ophiuchi, l'une des régions de formation d'étoiles les plus proches de la Terre. IRAS a été le premier télescope infrarouge lancé en orbite terrestre, au-dessus de l'atmosphère qui bloque la plupart des longueurs d'onde infrarouges. Les nuages ​​denses de gaz et de poussière de Rho Ophiuchi bloquent la lumière visible, mais la vision infrarouge de l'IRAS en a fait le premier observatoire capable de pénétrer ces couches pour révéler des étoiles nouveau-nées qui s'y cachent profondément.

Vingt ans plus tard, les multiples détecteurs infrarouges de Spitzer ont aidé les astronomes à déterminer des âges plus spécifiques pour de nombreuses étoiles de la région, fournissant ainsi un aperçu de la façon dont les jeunes étoiles évoluent dans l'univers. La vue infrarouge plus détaillée de Webb montre des jets jaillissant de jeunes étoiles, ainsi que des disques de matière qui les entourent, formant ainsi de futurs systèmes planétaires.

Un autre exemple est la bouche de Big Fish, une étoile entourée d’un disque de débris semblable à une ceinture d’astéroïdes. Il y a quarante ans, ce disque était l'une des découvertes phares de l'IRAS car il suggérait aussi fortement l'existence d'au moins une planète, à une époque où aucune exoplanète n'avait encore été découverte. Des observations ultérieures de Spitzer ont montré que le disque est constitué de deux sections – une région externe froide et une région interne chaude – et ont révélé davantage de preuves de l'existence de planètes.

Depuis, plusieurs autres télescopes, dont le télescope spatial Hubble de la NASA, ont étudié la bouche du gros poisson, et plus tôt cette année, les images prises par Webb ont donné aux scientifiques la vue la plus claire de la structure du disque à ce jour. Il a révélé deux anneaux invisibles de roche et de gaz dans le disque interne. La combinaison du travail de générations de télescopes met en lumière l’histoire de la gueule du gros poisson.

Le télescope spatial James Webb de la NASA s'appuie sur quatre décennies de travail de télescopes spatiaux qui détectent également la lumière infrarouge, en particulier deux autres télescopes de la NASA à la retraite : le satellite astronomique infrarouge (IRAS) et le télescope spatial Spitzer. Source de l'image : NASA/JPL-Caltech

Enquête astronomique infrarouge Insight

Lorsque l'IRAS a été lancée en 1983, les scientifiques n'étaient pas sûrs de ce que la mission allait révéler. Ils étaient incapables de prédire que le rayonnement infrarouge serait éventuellement utilisé dans presque tous les domaines de l'astronomie, y compris l'étude de l'évolution des galaxies, du cycle de vie des étoiles, de la source de poussière cosmique, de l'atmosphère des exoplanètes, des mouvements des astéroïdes, etc. plus. Objets géocroiseurs, et même la nature de l'un des plus grands mystères cosmiques de l'histoire, l'énergie noire.

L'IRAS a ouvert la voie à l'Observatoire spatial infrarouge (ISO) dirigé par l'Europe et à l'Observatoire spatial Herschel ; le satellite AKARI dirigé par le Japon ; Le Wide Field Infrared Survey Explorer (WISE) de la NASA, l'observatoire SOFIA (Stratospheric Observatory for Infrared Astronomy) de la NASA, ainsi que plusieurs observatoires de ballons.

« La lumière infrarouge est essentielle pour comprendre d'où nous venons et comment nous sommes arrivés ici, à la fois à la plus grande et à la plus petite échelle astrophysique », a déclaré Michael Werner, astrophysicien au Jet Propulsion Laboratory de la NASA en Californie du Sud. Werner, spécialisé dans les observations infrarouges, a travaillé comme scientifique de projet chez Spitzer. « Nous utilisons la lumière infrarouge pour regarder en arrière dans l'espace et le temps, afin de nous aider à comprendre comment l'univers moderne est né. La lumière infrarouge nous permet d'étudier la formation et l'évolution des étoiles et des planètes, ce qui nous raconte l'histoire de notre système solaire. .»

Vers Spitzer

Si IRAS est une mission exploratoire, Spitzer est conçu pour plonger profondément dans le monde infrarouge. De nombreuses cibles planétaires de Webb ont déjà été étudiées au cours de sa première année avec Spitzer, qui a poursuivi un large éventail de cibles scientifiques grâce à son large champ de vision et à sa résolution relativement élevée. Au cours de sa mission de 16 ans, Spitzer a découvert de nouvelles merveilles depuis les confins de l'univers (y compris certaines des galaxies les plus lointaines jamais observées à cette époque) jusqu'à notre système solaire (comme un nouvel anneau autour de Saturne). Les chercheurs ont également été surpris de découvrir que le télescope était un outil idéal pour étudier les exoplanètes (planètes situées en dehors de notre système solaire), ce à quoi ils ne s'attendaient pas lors de sa construction.

« Avec n'importe quel télescope, vous ne prenez pas seulement des données pour les obtenir, vous posez une question particulière ou une série de questions », explique Sean Carey, ancien directeur du Spitzer Science Center de l'IPAC, un spécialiste des données et centre de recherche. Centre pour la science des traitements à Caltech. « Les questions que nous pouvons poser avec Webb sont plus complexes et plus diversifiées en raison des connaissances que nous avons acquises grâce à des télescopes comme Spitzer et IRAS. »

Par exemple, Carey a déclaré : « Nous avons étudié les exoplanètes avec Spitzer et Hubble et avons découvert ce que vous pouvez faire avec un télescope infrarouge sur le terrain, quels types de planètes sont les plus intéressants et ce que vous pouvez apprendre à leur sujet. Ainsi, lorsque Webb Après notre lancement, nous avons décidé : « Nous nous sommes lancés dès le début dans l'étude des exoplanètes. »

Webb ouvre également la voie à de futures missions infrarouges. La prochaine mission SPHEREx (Spectrophotometer for Cosmic History, Epoch of Reionization et Ice Explorer) de la NASA ainsi que le prochain observatoire phare de l'agence, le télescope spatial romain Nancy Grace, continueront d'explorer l'univers dans l'infrarouge.

READ  Une nouvelle technologie pourrait accélérer la voie vers les carburants solaires sans carbone du futur
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Le rover Perseverance observe la pale de rotor remorquée d'un hélicoptère Ingenuity à la surface de Mars (photos)

Published

on

Le rover Perseverance observe la pale de rotor remorquée d'un hélicoptère Ingenuity à la surface de Mars (photos)

La lame était cassée, toujours non forgée, et a été retrouvée sur Mars.

Des passionnés de l'espace examinant des images brutes du rover Perseverance de la NASA ont récemment découvert la pale d'hélicoptère cassée d'Ingenuity gisant dans le sable martien. Ingenuity a été définitivement cloué au sol à la suite de l'accident de perte de pale, un atterrissage difficile survenu à la fin de son vol le 18 janvier.

Continue Reading

science

L'épaisseur de la croûte de glace révèle la température de l'eau sur les mondes océaniques

Published

on

Les astrobiologistes de l'Université Cornell ont mis au point une nouvelle façon de déterminer la température des océans sur des mondes lointains en fonction de l'épaisseur de leurs coquilles de glace, réalisant ainsi efficacement une océanographie depuis l'espace.

Les données disponibles montrant la variation de l'épaisseur de la glace permettent déjà de prédire la partie supérieure de l'océan d'Encelade, l'une des lunes de Saturne, et l'étude orbitale prévue par la NASA sur la croûte glacée d'Europe devrait faire de même pour la lune jovienne, beaucoup plus grande, renforçant ainsi les conclusions de la mission quant à savoir si elle pourrait soutenir la vie. .

Les chercheurs suggèrent qu'un processus appelé « pompage de glace », qu'ils ont observé sous les plates-formes de glace de l'Antarctique, a probablement formé la face inférieure des coquilles glacées d'Europe et d'Encelade, mais doit également être à l'œuvre sur Ganymède et Titan, qui sont de grandes lunes de Jupiter et Saturne. successivement. Ils ont montré que les plages de températures dans lesquelles la glace et les océans interagissent – ​​des régions importantes où des composants de la vie peuvent être échangés – peuvent être calculées en fonction de la pente de la croûte de glace et des changements du point de congélation de l’eau à différentes pressions et salinités.

« Si nous pouvons mesurer le changement d'épaisseur de ces coquilles de glace, nous pourrons obtenir des contraintes de température dans les océans, ce qu'il n'y a pas d'autre moyen de faire sans les percer », a déclaré Brittney Schmidt, professeur adjoint d'astronomie et d'astrophysique. . Sciences de la Terre et de l'atmosphère. « Cela nous donne un autre outil pour essayer de comprendre le fonctionnement de ces océans. La grande question est : les choses y vivent-elles, ou peuvent-elles y vivre ? »

READ  SpaceX vise à lancer 22 satellites Starlink samedi

Avec les membres actuels et anciens du Planetary Habitability and Technology Laboratory, Schmidt a co-écrit le livre « Ice-Ocean Interactions on Ocean Worlds Affecting the Topography of Ice Shells », publié dans la revue Journal de recherche géophysique : Planètes.

En 2019, à l'aide du robot télécommandé Icefin, l'équipe de Schmidt a observé de la glace pompée dans une fissure au fond de la plate-forme de glace de Ross, en Antarctique.

Les chercheurs ont cartographié les plages d'épaisseur, de pression et de salinité possibles de la croûte pour les mondes océaniques avec une gravité variable, et ont conclu que le pompage de glace se produirait dans les scénarios les plus probables, mais pas dans tous les scénarios. Ils ont découvert que les interactions entre la glace et les océans sur Europe pourraient être similaires à celles observées sous la plate-forme de glace de Ross, preuve que ces régions pourraient être parmi les plus semblables à la Terre sur des mondes extraterrestres, a déclaré Justin Lawrence, chercheur invité au Cornell Center. . d'astrophysique et de sciences planétaires et responsable de programme chez Honeybee Robotics.

La sonde Cassini de la NASA a produit suffisamment de données pour prédire la plage de température de l'océan d'Encelade, en fonction de l'inclinaison de sa croûte de glace des pôles à l'équateur : -1 095°C à -1 272°C. Connaître les températures permet de comprendre comment la chaleur circule dans les océans et comment elle se propage, affectant l'habitabilité.

Les chercheurs s'attendent à ce que le pompage de glace soit faible sur Encelade, une petite lune (aussi large que l'Arizona) avec une topographie spectaculaire, tandis que sur Europe plus grande – qui a à peu près la taille de la lune terrestre – ils s'attendent à ce qu'il fonctionne rapidement pour ramollir et aplatir la croûte glacée. . un socle.

READ  Des fossiles juvéniles de T. rex révélés comme une petite espèce unique de dinosaure

Ce travail montre comment la recherche sur le changement climatique sur Terre peut également bénéficier à la science planétaire, a déclaré Schmidt, c'est pourquoi la NASA a soutenu le développement d'ICEVEN.

« Il existe une relation entre la forme de la croûte de glace et la température de l'océan », a déclaré Schmidt. « C'est une nouvelle façon d'obtenir plus d'informations à partir des mesures de la croûte de glace que nous espérons pouvoir obtenir pour Europe et d'autres mondes. »

La recherche a été soutenue par les futurs chercheurs du programme FIESST (Earth and Space Science and Technology) de la NASA et par la National Science Foundation.

Continue Reading

science

Les astronomes découvrent un nouveau lien entre l'eau et la formation planétaire

Published

on

Les astronomes ont découvert de l'eau dans le disque entourant une jeune étoile où des planètes pourraient se former, révélant un nouveau lien entre l'ingrédient clé de la vie et la formation des planètes.

Jusqu’à présent, les chercheurs n’étaient pas en mesure de cartographier la façon dont l’eau est distribuée dans un disque stable et froid, le type de disque qui offre les meilleures conditions pour que les planètes se forment autour des étoiles.

Les observations, réalisées avec le grand télescope millimétrique/submillimétrique d'Atacama (ALMA), ont révélé au moins trois fois la quantité d'eau trouvée dans tous les océans de la Terre dans le disque interne de la jeune étoile semblable au soleil HL Tauri, située à 450 mètres d'altitude. dans des années. Loin de la Terre dans la constellation du Taureau.

« Je n'aurais jamais imaginé que nous pourrions capturer une image d'océans de vapeur d'eau dans la même région où la planète était susceptible de se former », a déclaré Stefano Facchini, astronome à l'Université de Milan en Italie, qui a dirigé l'étude.

Il a ajouté : « Nos résultats montrent comment la présence d'eau peut affecter l'évolution d'un système planétaire, tout comme cela s'est produit il y a environ 4,5 milliards d'années dans notre système solaire. »

« Il est vraiment remarquable que nous puissions non seulement détecter, mais aussi capturer des images détaillées et résoudre spatialement la vapeur d'eau à une distance de 450 années-lumière de la Terre », a déclaré le co-auteur Leonardo Testi, astronome à l'Université de Bologne en Italie. . nous. »

Les observations réalisées par ALMA, dont l'Observatoire européen austral (ESO) est partenaire, permettent aux astronomes de déterminer la répartition de l'eau dans différentes régions du disque.

READ  Des fossiles juvéniles de T. rex révélés comme une petite espèce unique de dinosaure

Selon l'étude publiée dans la revue Nature Astronomy, une grande quantité d'eau a été trouvée dans la région où se trouve une lacune connue dans le disque de HL Tauri.

Les chercheurs affirment que cela indique que la vapeur d’eau peut affecter la composition chimique des planètes qui se forment dans ces régions.

« C'est vraiment excitant de voir de première main, sur l'image, des molécules d'eau libérées par des particules de poussière glacée », a déclaré Elizabeth Humphreys, astronome à l'ESO qui a également participé à l'étude.

Les grains de poussière qui composent le disque sont les graines de la formation planétaire, entrant en collision et se collant pour former des objets plus gros.

Les astronomes pensent que lorsqu’il fait suffisamment froid pour que l’eau gèle et se transforme en particules de poussière, les objets se collent mieux les uns aux autres, créant ainsi l’endroit idéal pour la formation des planètes.

Continue Reading

Trending

Copyright © 2023