Connect with us

science

L’équipe de propulsion de White Sands teste un composant du moteur Orion imprimé en 3D

Published

on

L’équipe de propulsion de White Sands teste un composant du moteur Orion imprimé en 3D

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

source fiable

Relecture


Essai routier de l’injecteur du moteur principal Orion. Crédit : NASA

× Fermer


Essai routier de l’injecteur du moteur principal Orion. Crédit : NASA

Lorsque le vaisseau spatial Orion transportera les premiers équipages Artemis vers la Lune et retour, il s’appuiera sur le module de service européen fourni par l’ESA (Agence spatiale européenne) pour effectuer le voyage. Le module de service assure la production d’énergie électrique, la propulsion, le contrôle de la température et le stockage des consommables pour Orion, jusqu’au moment où il se sépare du module d’équipage avant de rentrer dans l’atmosphère terrestre.

Pour les six premières missions Artemis – Artemis 1 à Artemis 6 – la NASA et l’ESA utiliseront un moteur Orbiter Maneuvering System (OMS) remis à neuf du programme de la navette spatiale comme moteur principal du module de service européen. Après Artemis VI, la NASA aura besoin d’un nouveau moteur pour prendre en charge Orion.

Ce besoin sera satisfait par le moteur principal Orion (OME) en cours de développement avec Aerojet Rocketdyne (maintenant connu sous le nom de L3 Harris), mais avant que le moteur principal Orion puisse voler, tous ses composants doivent être minutieusement testés.

Entrez dans le bureau d’essais de propulsion du centre d’essais de White Sands de la NASA. De novembre 2023 à janvier 2024, cette équipe a mené des tests rigoureux sur un composant essentiel de l’OME : l’injecteur qui fournit le propulseur pour démarrer le moteur et fournit la poussée nécessaire pour ramener Orion de la Lune.

Les tests ont été menés sur le banc d’essai 301A dans la zone de propulsion 300 à White Sands. L’injecteur a été monté sur un moteur d’essai et a tiré plusieurs fois pendant trois secondes chacune, pour un total de 21 tests. À chaque test, l’équipe de White Sands a cherché à démontrer la capacité de l’injecteur OME à maintenir une combustion constante et contrôlée et à revenir à des opérations normales si le processus de combustion est artificiellement perturbé.

Plusieurs membres de l’équipe de White Sands ont participé à cet effort. James Hess, chef de projet et directeur des opérations, a veillé à ce que les tests soient réalisés en toute sécurité et avec succès en supervisant les opérations et en s’assurant que les exigences des tests étaient respectées. James Mahoney a géré le calendrier et le budget des tests en tant que chef de projet, tandis que Jordan Addai a dirigé les opérations et les tests proprement dits.

D’autres rôles clés incluent l’ingénieur électricien principal Sal Muniz et l’ingénieur en instrumentation Jesus Lujan Martino. Sean D’Souza d’Aerojet Rocketdyne a servi de responsable des articles de test, garantissant que l’injecteur fonctionnait comme prévu et répondait aux exigences du scénario de test. Un soutien supplémentaire a été fourni par les membres de l’équipe du programme OME du Johnson Space Center et du Glenn Research Center de la NASA.

Les résultats ont confirmé que l’injecteur OME pouvait maintenir une combustion stable et l’équipe a déterminé que les tests étaient réussis. Un aspect unique de l’injecteur OME est qu’il est fabriqué selon un processus de fabrication additive appelé fabrication laser sélective – essentiellement une impression 3D utilisant des poudres métalliques au lieu de plastique. Démontrer l’efficacité des composants imprimés en 3D peut aider la NASA et ses partenaires à réduire les coûts et à accroître l’efficacité des processus de développement.

La conception de l’injecteur sera désormais intégrée dans l’OME complet qui sera testé en tant qu’ensemble moteur complet à White Sands une fois prêt.

READ  Des doutes géants sur les exmoons géantes
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Les plants de canola GM infiltrés persisteront à long terme, mais pourraient perdre leur résistance artificielle aux pesticides.

Published

on

Les plants de canola GM infiltrés persisteront à long terme, mais pourraient perdre leur résistance artificielle aux pesticides.

Cet article a été révisé selon Science Processus d’édition
Et Stratégies.
Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :

Vérification des faits

Publication évaluée par des pairs

source fiable

Relecture


Floraison du canola. Le canola (Brassica napus L.) est très attrayant pour les insectes pollinisateurs et se marie facilement avec d’autres variétés de chou et de moutarde. Crédit : CSagers, CC-BY 4.0 (creativecommons.org/licenses/by/4.0/)

× Fermer


Floraison du canola. Le canola (Brassica napus L.) est très attrayant pour les insectes pollinisateurs et se marie facilement avec d’autres variétés de chou et de moutarde. Crédit : CSagers, CC-BY 4.0 (creativecommons.org/licenses/by/4.0/)

Les populations de plants de canola génétiquement modifiés pour être résistants aux herbicides peuvent survivre hors des fermes, mais risquent de perdre progressivement leurs gènes modifiés, selon une nouvelle étude dirigée par Cynthia Saggers de l’Arizona State University, aux États-Unis, publiée le 22 mai dans la revue en libre accès. Un plus.

L’hypothèse a été émise que si des plantes cultivées génétiquement modifiées s’échappent des champs agricoles, leur durée de vie sera de courte durée. Cela rendrait moins probable qu’ils envahissent des zones sauvages ou propagent leurs gènes insérés, appelés transgènes, aux populations sauvages de plantes étroitement apparentées. Cependant, peu d’études ont été réalisées pour déterminer si ces populations de plantes cultivées « sauvages » peuvent survivre à l’état sauvage à long terme.

Dans la nouvelle étude, les chercheurs ont mené une enquête à grande échelle auprès des résidents de canola génétiquement modifié vivant au bord des routes dans le Dakota du Nord, répétant l’enquête qu’ils avaient initialement menée en 2010.

Ils ont constaté que le nombre total de plants de canola sauvages dans l’échantillon avait diminué et que les populations végétales étaient devenues moins communes au fil du temps. Lorsqu’ils ont testé la résistance des plantes aux herbicides, ils ont constaté que les types d’herbicides auxquels les plantes étaient résistantes changeaient avec le temps, probablement en raison de changements dans les variétés cultivées par les agriculteurs.

Il est important de noter que près d’un quart des plantes sauvages n’étaient ni résistantes ni contenaient de transgènes – en hausse de 19,9 % en 2010 à 24,2 % en 2021 – ce qui suggère que ces populations pourraient perdre leurs transgènes.

Les chercheurs émettent l’hypothèse que les populations de canola sauvage pourraient subir une pression évolutive les poussant à se débarrasser des transgènes, ce qui pourrait se produire si les plants de canola modifiés étaient désavantagés une fois qu’ils n’étaient plus cultivés à la ferme.

Des analyses génétiques supplémentaires peuvent aider à clarifier les origines des plantes et à obtenir plus d’informations sur la durée pendant laquelle le transgène peut persister dans l’environnement.

« L’hypothèse selon laquelle les variétés de cultures génétiquement modifiées seront limitées aux conditions favorables des champs agricoles et ne se mélangeront pas aux populations végétales naturelles peut être rejetée », déclare Stephen Travers. « Des populations sauvages de canola autosuffisantes à long terme (certaines génétiquement modifiées, d’autres). non) sont un phénomène mondial », estime Stephen Travers. Cela souligne ainsi la nécessité de mener davantage de recherches sur le fonctionnement de la dédomestication, l’ampleur de son impact sur les populations naturelles et les risques que peut poser la présence occasionnelle de transgènes pour l’agriculture.

Plus d’information:
La présence continue de populations de canola génétiquement modifiés aux États-Unis et la présence occasionnelle de transgènes dans l’environnement, Un plus (2024). est ce que je: 10.1371/journal.pone.0295489

Informations sur les magazines :
Un plus


READ  Tête dans le ciel : une Brésilienne de huit ans nommée plus jeune astronome du monde | la vie
Continue Reading

science

Elon Musk, PDG de SpaceX, révèle que le vaisseau spatial vise à être lancé en Floride avec deux tours et un alliage d’acier inoxydable 301 « bien meilleur »

Published

on

Elon Musk, PDG de SpaceX, révèle que le vaisseau spatial vise à être lancé en Floride avec deux tours et un alliage d’acier inoxydable 301 « bien meilleur »


27% de bénéfices tous les 20 jours ?

C’est la moyenne de Nic Chahine avec les options qu’il achète. Ne vendez pas d’options d’achat ou de spreads couverts… achetez des options. La plupart des traders n’ont même pas un taux de réussite de 27 % sur les options de vente. Il a un taux de victoire de 83%. Voici comment il procède.


EspaceX PDG Elon Musk Elle a révélé que la société envisageait de lancer la fusée Starship, qui vise à ramener des humains sur la Lune, depuis la Floride.

Qu’est ce qui est passé: Tous les développements et fabrications d’engins spatiaux ont actuellement lieu à Starbase au Texas. Les trois vols d’essai précédents du vaisseau spatial ont été lancés depuis un port spatial commercial situé dans le comté de Cameron, près du golfe du Mexique.

Cependant, Musk s’est tourné vers les médias sociaux et a déclaré que la société avait l’intention de construire deux tours Starship à Cap Canaveral en Floride, faisant allusion à des projets de lancement de Starships depuis l’État. Alors que l’une des deux tours devrait se trouver au complexe de lancement 39A du Kennedy Space Center, l’emplacement de la deuxième tour est toujours à l’étude, a déclaré le PDG.

« Nous envisageons de construire deux tours au Cap pour Starship, une à 39A et une à déterminer (nous n’avons pas encore l’approbation finale) », a écrit Musk.

Nous visons à construire deux tours au Cap pour Staeship, une à 39A et une à déterminer (nous n’avons pas encore l’approbation finale)

-Elon Musk (@elonmusk) 20 mai 2024

Musk a également ajouté que l’équipe SpaceX avait développé un nouvel alliage métallique qui est « bien meilleur » que l’acier inoxydable 301 pour le vaisseau spatial.

en quoi est-ce important: Plus tôt cette semaine, Musk a annoncé le lancement de SpaceX Le vaisseau spatial repartira dans environ deux semaines, le prochain lancement étant prévu début juin. Pour le prochain vol, l’objectif de Starship est de rentrer dans l’atmosphère terrestre avec tous les systèmes fonctionnant malgré la chaleur extrême, a-t-il ajouté.

Le vaisseau spatial est décrit comme le lanceur le plus puissant au monde, avec un châssis mesurant 121 mètres de haut et pesant environ 5 000 tonnes.

Lors du précédent test en vol de Starship, le 14 mars, le vaisseau spatial a perdu le contact et a mal fonctionné en rentrant dans l’atmosphère de la planète au lieu de tomber comme prévu dans l’océan Indien. Le dernier vol a duré environ une heure. SpaceX a lancé Starship deux fois l’année dernière, d’abord en avril puis en novembre.

La NASA compte actuellement sur le succès du vaisseau spatial pour ramener des humains sur la Lune. La dernière mission habitée sur la Lune a eu lieu en 1972 à bord d’Apollo 17. Depuis lors, aucun équipage n’a voyagé au-delà de l’orbite terrestre basse.

Voir plus de couverture de l’avenir de la mobilité de Benzinga par En suivant ce lien.

En savoir plus: L’incendie de l’usine Tesla de Fremont a été rapidement maîtrisé : aucun blessé n’a été signalé

Image via Shutterstock


27% de bénéfices tous les 20 jours ?

C’est la moyenne de Nic Chahine avec les options qu’il achète. Ne vendez pas d’options d’achat ou de spreads couverts… achetez des options. La plupart des traders n’ont même pas un taux de réussite de 27 % sur les options de vente. Il a un taux de victoire de 83%. Voici comment il procède.


Participez pour gagner 500 $ en actions ou en crypto-monnaies

Entrez votre e-mail et vous recevrez également la mise à jour Ultimate Morning de Benzinga, une carte-cadeau gratuite de 30 $ et bien plus encore !

© 2024 Benzinga.com. Benzinga ne fournit pas de conseils en investissement. Tous droits réservés.

READ  Divulgué : une substance qui pourrait être essentielle pour réduire la consommation d'énergie des ordinateurs et des appareils électroniques
Continue Reading

science

Le tendon d’Achille déchiré montre une réparation plus rapide grâce à la thérapie par irradiation plasmatique

Published

on

Quel est le plus gros ligament du corps humain ? Certains pourraient être surpris qu’il s’agisse du tendon d’Achille. Bien qu’il soit également considéré comme le ligament le plus résistant, il peut se déchirer, bon nombre de ces blessures affectant les amateurs de sport dans la trentaine ou la quarantaine. Une intervention chirurgicale peut être nécessaire et une longue période de repos, d’immobilisation et de traitement peut être difficile à tolérer.

Dans le but de raccourcir le temps de récupération, une équipe de recherche dirigée par Katsumasa Nakazawa de la faculté de médecine de l’Université métropolitaine d’Osaka, étudiant diplômé du département d’orthopédie, professeur agrégé Hiromitsu Toyoda, professeur Hiroaki Nakamura et Jun-Seok Oh, diplômé professeur d’ingénierie, axé sur le plasma non thermique à pression atmosphérique comme méthode de traitement.

Cette étude est la première à montrer qu’une telle irradiation plasmatique peut accélérer la réparation des tendons. L’équipe a déchiré le tendon d’Achille chez des souris de laboratoire, puis l’a suturé. Pour un groupe de souris, la zone suturée a été irradiée avec un jet de plasma d’hélium. Le groupe exposé à l’irradiation plasmatique a montré une régénération tendineuse plus rapide et une force accrue deux, quatre et six semaines après la chirurgie par rapport au groupe non traité.

« Nous avons précédemment découvert que l’irradiation plasmatique non thermique à pression atmosphérique avait pour effet de favoriser la régénération osseuse. Dans cette étude, nous avons découvert que la technologie favorise également la régénération et la guérison des tendons, démontrant qu’elle a des applications dans un large éventail de domaines », professeur. » annonça Toyoda. « En combinaison avec les traitements tendineux existants, il devrait contribuer à une régénération tendineuse plus fiable et à une durée de traitement plus courte. »

READ  NASA Persevere Rover partage les meilleures photos de Mars de 2021
Continue Reading

Trending

Copyright © 2023