Connect with us

science

Une nouvelle recherche offre à l’intelligence artificielle un moyen de répondre aux questions au moyen d’une méta-inférence sur plusieurs chaînes de pensée

Published

on

Une nouvelle recherche offre à l’intelligence artificielle un moyen de répondre aux questions au moyen d’une méta-inférence sur plusieurs chaînes de pensée
Source : https://arxiv.org/abs/2304.13007

Une invite CoT utilise une explication par étapes pour guider un grand modèle de langage afin de développer une réponse. Il a été démontré que la stimulation CoT augmente considérablement la productivité dans les activités à forte intensité de réflexion. La technique d’auto-cohérence (SC) augmente la précision en échantillonnant plusieurs chaînes de pensée et en renvoyant la sortie majoritaire.

Des gains d’efficacité résultent de SC, mais la méthode présente des inconvénients. La première est qu’il est impossible d’obtenir un consensus lorsqu’il existe de nombreux résultats concevables car chaque chaîne de pensée peut aboutir à un résultat différent. Deuxièmement, ignorer le processus de réflexion qui a conduit au résultat peut conduire à manquer un détail important.

Dans leur article « Multi-threaded Reasoning », des chercheurs de l’Université de Tel Aviv, de l’Institut Allen pour l’intelligence artificielle et de l’Université Bar-Ilan présentent une méthode appelée MCR, dans laquelle ils canalisent un grand modèle de langage (LLM) dans un méta-esprit à travers de nombreux fils de pensée. et générer une réponse et une explication concluantes. Les chaînes logiques données ne sont pas utilisées dans leurs prédictions (comme elles le sont dans SC) mais plutôt pour combiner des données de différentes chaînes. Alors que les deux approches reposent sur l’élaboration d’un ensemble de chaînes de pensée possibles, SC propose la réponse la plus courante obtenue à travers ces chaînes :  » Non  » (boîte grise, en bas à droite). Inversement, MCR agrège les résultats intermédiaires de chaque série (carrés bleus, en haut à gauche) dans un contexte unique qui est ensuite transmis au modèle de méta-raisonneur avec la requête d’origine. La méta-logique est un LLM distinct qui est invité à méta-raisonner sur plusieurs lignes de raisonnement différentes avant de proposer une solution et une justification concluantes.

READ  Alerte Nasa ! L'astéroïde 2023 LV, de 110 pieds de diamètre, se déplace à un rythme rapide vers la Terre aujourd'hui

Le noyau du MCR se compose de trois parties. La pensée en chaîne est créée en combinant un modèle de décomposition et un récupérateur. Après avoir fusionné ces chaînes, un contexte multi-chaînes est généré et introduit dans la méta-logique.

L’équipe teste le MCR sur plusieurs ensembles de données QA multiphases difficiles dans un scénario de champ ouvert. Ils classent les problèmes comme implicites ou explicites. Ils utilisent SC et les versions de Self-Ask et CoT avec récupération comme points de référence pour les comparaisons avec le MCR. En utilisant le même nombre de chaînes de raisonnement, les résultats révèlent que le MCR surpasse systématiquement toutes les autres lignes de base. Ils évaluent la valeur MCR en évaluant et en mesurant soigneusement la qualité des interprétations qu’elle génère. Selon les résultats, le MCR peut fournir des explications rationnelles pour plus de 82 % des situations.


scanner le Document de recherche Et lien github. N’oubliez pas de rejoindre 20k + ML Sub RedditEt canal de discordeEt Et Courriel, où nous partageons les dernières nouvelles sur la recherche en IA, des projets d’IA sympas, et plus encore. Si vous avez des questions concernant l’article ci-dessus ou si nous avons oublié quelque chose, n’hésitez pas à nous envoyer un e-mail à [email protected]

🚀 Découvrez les outils d’IA de 100 dans le club d’outils d’IA

Tanushree Shenwai est consultant stagiaire chez MarktechPost. Elle poursuit actuellement son baccalauréat en technologie de l’Indian Institute of Technology (IIT), Bhubaneswar. Elle est passionnée par la science des données et a un vif intérêt pour le champ d’application de l’intelligence artificielle dans divers domaines. Elle est passionnée par l’exploration des nouveaux développements technologiques et de leurs applications dans le monde réel.

READ  Quelle est la plus haute montagne qui puisse pousser sur Terre ?

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Des chercheurs planétaires résolvent le mystère de la façon dont Pluton a obtenu sa forme de poire

Published

on

Des chercheurs planétaires résolvent le mystère de la façon dont Pluton a obtenu sa forme de poire

La surface de Pluton est dominée par l'immense bassin en forme de poire de Spoutnik Planitia. Il semble que son origine soit due à un impact, mais la modélisation n'a pas encore expliqué son étrange géométrie. Les planétologues de l'Université de Berne proposent un mécanisme d'impact qui reproduit la forme topographique du bassin tout en expliquant son alignement près de l'axe Pluton-Charon. Selon leurs recherches, la collision de Pluton avec un corps planétaire d'un diamètre d'environ 700 kilomètres (435 miles) a donné naissance à Spoutnik Planitia.

Cette mosaïque de Pluton a été réalisée à partir d'images New Horizons LORRI prises le 14 juillet 2015, à une distance de 49 700 miles (80 000 km). Projetée à partir d'un point situé à 1 800 km au-dessus de l'équateur de Pluton, cette vue regarde vers le nord-est la région sombre et cratérisée de Cthulhu-Riggio, en direction de l'étendue lumineuse et lisse de plaines glacées appelée Spoutnik Planum. Le pôle nord de Pluton se trouve juste à l'extérieur de l'image de gauche. Cette mosaïque a été réalisée à partir d'images panchromatiques de la caméra New Horizons LORRI, avec des couleurs superposées à partir du nuancier Ralph à bord de New Horizons. Crédit image : SA Stern et autres.

En 2015, la sonde New Horizons de la NASA a révélé que la surface de Pluton était géologiquement complexe.

Il est dominé par un bassin rempli de glace d'azote de 1 200 x 2 000 km (746 x 1 243 mi) appelé Spoutnik Planitia.

Spoutnik Planitia est la partie ouest de Tombo Reggio, la célèbre structure en forme de cœur de Pluton.

READ  Résoudre une partie du "problème solaire"

Le bassin est de 3 à 4 kilomètres (1,9 à 2,5 mi) plus bas en altitude que la majeure partie de la surface de la planète naine.

Le Dr Harry Ballantyne, planétologue à l’Université de Berne, a déclaré : « L’apparence brillante de Spoutnik Planitia est due au fait qu’elle est principalement remplie de glace blanche à l’azote qui se déplace et se déplace constamment pour lisser la surface. »

« Cet azote s'est probablement accumulé rapidement après l'impact en raison de la basse altitude. »

« La partie orientale du « noyau » est également recouverte d’une couche similaire mais beaucoup plus fine de glace d’azote, dont l’origine n’est pas encore claire pour les scientifiques, mais est probablement liée à Spoutnik Planitia. »

Le Dr Martin Goetze, planétologue à l'Université de Berne, a déclaré : « La forme allongée de Spoutnik Planitia indique clairement que la collision n'était pas une collision directe, mais plutôt une collision oblique. »

New Horizons a capturé cette image haute résolution de Pluton le 14 juillet.  La surface de Pluton présente une gamme éblouissante de couleurs subtiles, rehaussées dans cette vue par un arc-en-ciel de bleus pâles, de jaunes, d'oranges et de rouges profonds.  De nombreux reliefs ont leurs propres couleurs distinctes, racontant une histoire géologique et climatique complexe que les scientifiques commencent tout juste à déchiffrer.  Source de l'image : NASA/Laboratoire de physique appliquée de l'Université Johns Hopkins/Institut de recherche du Sud-Ouest.

New Horizons a capturé cette image haute résolution de Pluton le 14 juillet. La surface de Pluton présente une gamme éblouissante de couleurs subtiles, rehaussées dans cette vue par un arc-en-ciel de bleus pâles, de jaunes, d'oranges et de rouges profonds. De nombreux reliefs ont leurs propres couleurs distinctes, racontant une histoire géologique et climatique complexe que les scientifiques commencent tout juste à déchiffrer. Source de l'image : NASA/Laboratoire de physique appliquée de l'Université Johns Hopkins/Institut de recherche du Sud-Ouest.

Les auteurs ont utilisé un logiciel de simulation d’hydrodynamique de particules lisses (SPH) pour recréer numériquement de tels impacts, en faisant varier la configuration de Pluton et de son corps d’impact, ainsi que la vitesse et l’angle du corps d’impact.

READ  Vénus semble avoir traversé un groupe de plus de 1 000 étoiles en juin

Ces simulations ont confirmé leurs soupçons sur l'angle d'impact oblique et ont déterminé la configuration du corps d'impact.

« Le noyau de Pluton est si froid que les roches sont restées très solides et n'ont pas fondu malgré la chaleur de l'impact, et grâce à l'angle d'impact et à la faible vitesse, le noyau d'impact ne s'est pas enfoncé dans le noyau de Pluton, mais est resté intact », a déclaré Dr Ballantyne.

« Quelque part sous Spoutnik se trouvent les restes du noyau d'un autre objet massif, que Pluton n'a jamais digéré », a ajouté le Dr Eric Asfaugh, planétologue à l'Université d'Arizona.

« Cette force fondamentale et cette vitesse relativement faible étaient la clé du succès de ces simulations : la faible force donnerait lieu à un reste de surface très symétrique qui ne ressemblait en rien à la forme de larme observée par New Horizons. »

« Nous sommes habitués à considérer les collisions planétaires comme des événements incroyablement intenses dont vous pouvez ignorer les détails, à l'exception de choses comme l'énergie, l'élan et la densité. »

« Mais dans le système solaire lointain, les vitesses sont beaucoup plus lentes et la glace solide est solide, vous devez donc être plus précis dans vos calculs. C'est là que le plaisir commence. »

Les découvertes de l’équipe ont également jeté un nouvel éclairage sur la structure interne de Pluton.

« En fait, un impact géant comme celui simulé s'est probablement produit très tôt dans l'histoire de Pluton », ont déclaré les chercheurs.

« Cela pose cependant un problème : une dépression géante comme Spoutnik Planitia devrait se déplacer lentement au fil du temps vers le pôle de la planète naine en raison des lois de la physique, car elle souffre d'un déficit de masse. Cependant, elle est paradoxalement proche de l'équateur. .

READ  La saison des pluies de météores s'intensifie avec l'activation des Orionides et des Taurides

« L'explication théorique précédente était que Pluton, comme de nombreux autres corps planétaires du système solaire externe, possède un océan d'eau liquide souterrain. »

« Selon l'explication précédente, la croûte glacée de Pluton serait plus fine dans la région de Spoutnik Planitia, provoquant un gonflement de l'océan, et comme l'eau liquide est plus dense que la glace, on se retrouverait avec un excédent de masse qui stimulerait la migration vers l'équateur. »

« Cependant, la nouvelle étude propose un point de vue différent. »

« Dans nos simulations, le manteau primitif de Pluton a été complètement excavé par l'impact, et comme le matériau du noyau de l'impacteur est dispersé sur le noyau de Pluton, cela crée un excès de masse local qui pourrait expliquer la migration vers l'équateur sans océan souterrain, ou tout au plus. un océan souterrain », a déclaré le Dr Gotzi : « Très mince. »

« Cette origine nouvelle et innovante de la forme en forme de cœur de Pluton pourrait conduire à une meilleure compréhension de l'origine de Pluton », a déclaré le Dr Adeniy Denton, planétologue à l'Université de l'Arizona.

le résultats Il a été publié dans le magazine Astronomie naturelle.

_____

H. A. Ballantyne et autres. Spoutnik Planitia est un vestige d'impact qui pointe vers un ancien masson rocheux sur Pluton sans océan. Nat Astron, publié en ligne le 15 avril 2024 ; est ce que je: 10.1038/s41550-024-02248-1

Continue Reading

science

Une molécule organique stable ouvre la voie aux piles à combustible de nouvelle génération

Published

on

Une molécule organique stable ouvre la voie aux piles à combustible de nouvelle génération

Trouver des alternatives énergétiques propres à l’utilisation de combustibles fossiles est devenu plus urgent car les niveaux de dioxyde de carbone dans l’atmosphère ont atteint des niveaux records. Le fait que des catalyseurs métalliques coûteux tels que le platine soient nécessaires dans la technologie des piles à combustible pour convertir l'hydrogène en énergie est l'un des défis auxquels les chercheurs sont confrontés..

Charles Machan (à gauche) et Michael Hylinski (à droite) ont identifié une molécule organique qui pourrait remplacer l'utilisation de métaux rares et coûteux dans les piles à combustible. Crédit image : Collège et École supérieure des arts et des sciences, Université de Virginie.

Une équipe de chercheurs de Université de VirginieLa Graduate School of Arts and Sciences de l'UCLA a découvert une molécule organique qui pourrait remplacer les catalyseurs métalliques plus coûteux.

Les piles à combustible, essentielles pour alimenter les véhicules électriques et les générateurs industriels et résidentiels, s'appuient sur des métaux comme le platine pour initier la réaction chimique qui divise les sources de carburant comme l'hydrogène gazeux en protons et en électrons, qui les convertissent ensuite en électricité.

Étant donné que les catalyseurs organiques se décomposent en parties inutiles au cours du processus de catalyse, ils ne sont pas considérés comme une alternative viable aux catalyseurs à métaux rares.

Cependant, le doctorat. Les candidates Emma Cook et Anna Davis, ainsi que les professeurs adjoints de chimie Charles Machan et Michael Hylinski, ont découvert une molécule organique composée de carbone, d'hydrogène, d'azote et de fluor qui pourrait servir d'alternative pratique dans une étude publiée dans la revue Société chimique américaine.

Selon Machan, la molécule peut initier une réaction qui réduit l'oxygène à l'intérieur de la pile à combustible, réagir avec les sous-produits de la réaction et revenir à son état d'origine.

READ  Les scientifiques jettent un nouvel éclairage sur l'origine de la lune

Ces molécules sont stables dans des conditions dans lesquelles la plupart des molécules se sont décomposées et continuent d'atteindre une activité compatible avec le niveau des catalyseurs de métaux de transition..

Charles Machan, professeur agrégé, École supérieure des arts et des sciences, Université de Virginie

Les résultats préliminaires de l'équipe représentent une avancée majeure dans la recherche de piles à combustible rentables et respectueuses de l'environnement, utilisant des matériaux moins coûteux et plus durables. La prochaine génération de piles à combustible pourrait être développée d’ici 5 à 10 ans.

Cette même molécule ne peut pas se transformer en pile à combustible. Ce résultat dit qu'il peut y avoir des catalyseurs à base de carbone, et si vous modifiez ceux qui contiennent certains groupes chimiques, vous pouvez espérer les transformer en d'excellents catalyseurs pour la réaction de réduction de l'oxygène. L’objectif ultime est d’incorporer les propriétés qui rendent cette molécule si stable dans un matériau massif, afin de remplacer l’utilisation du platine..

Charles Machan, professeur agrégé, École supérieure des arts et des sciences, Université de Virginie

Hilinski, dont le groupe de recherche se concentre sur la chimie organique, a souligné l'importance de la nature interdisciplinaire de l'équipe de recherche.

Cette molécule que nous utilisons comme catalyseur a une histoire dans mon laboratoire, mais nous avons toujours recherché son utilisation dans des réactions chimiques effectuées sur des molécules contenant du carbone beaucoup plus grosses, telles que les ingrédients actifs de médicaments. Sans l'expertise de Charlie Machan, je ne pense pas que nous aurions pu relier ce sujet à la chimie des piles à combustible..

Michael Hylinski, professeur agrégé, Graduate School of Arts and Sciences, Université de Virginie

La découverte pourrait également avoir un impact sur la production industrielle de peroxyde d’hydrogène, un produit ménager standard utilisé dans le traitement des eaux usées et la fabrication du papier.

READ  La saison des pluies de météores s'intensifie avec l'activation des Orionides et des Taurides

Machan a dit :Le processus de fabrication du peroxyde d’hydrogène est peu respectueux de l’environnement et consomme beaucoup d’énergie. Il faut reformer le méthane avec de la vapeur à haute température pour libérer l'hydrogène utilisé pour le générer.« .

La découverte de l'équipe Machan pourrait également renforcer le rôle catalyseur de cette mesure, ce qui pourrait profiter aux entreprises, à l'environnement et à la technologie de traitement de l'eau.

Hilinski a également noté que les implications de cette découverte et du travail d'équipe qui en résulte pourraient aller bien au-delà du stockage d'énergie.

Hilinski a dit :Dans l’ensemble, l’une des choses les plus intéressantes de cette étude est qu’en électrifiant le catalyseur, nous avons modifié sa façon de réagir. C’est quelque chose d’inattendu et cela pourrait également être utile dans la fabrication de médicaments, que mon équipe de recherche cherche à explorer.« .

Machan, dont le groupe de recherche se spécialise en électrochimie moléculaire, attribue cette découverte à la composition interdisciplinaire de l'équipe de recherche.

Machan a conclu son discours en disant :Sans l'expertise de l'équipe de Mike Hylinski dans la fabrication de molécules organiques stables pouvant subir le type de réactions nécessaires, ce travail n'aurait pas été possible. Cette molécule organique unique nous a permis de faire quelque chose que seuls les métaux de transition peuvent faire normalement.« .

Référence du magazine :

Cook, NE, et coll. (2024) Réduction homogène de l’O_2 sans métal par électrocatalyseur à base d’iminium. Société chimique américaine. est ce que je.org/10.1021/jacs.3c14549

source: https://as.virginia.edu/

Continue Reading

science

Super accélérateur de rayons cosmiques – Des astronomes chinois ont découvert une goutte géante de rayons gamma à haute énergie

Published

on

Super accélérateur de rayons cosmiques – Des astronomes chinois ont découvert une goutte géante de rayons gamma à haute énergie

Le LHAASO a identifié un superaccélérateur de rayons cosmiques dans une bulle de rayons gamma dans la région du Cygne, ce qui représente une avancée majeure dans la compréhension des rayons cosmiques dont les énergies dépassent 10 PeV et de leurs origines dans la Voie lactée. Vue de la structure d’une bulle géante de rayons gamma de très haute énergie. Crédit : China Media Group

Le Large High-Altitude Air Shower Observatory (LHAASO) a découvert une structure géante de bulles de rayons gamma de très haute énergie dans la région de formation d'étoiles du Cygnus, marquant pour la première fois l'origine de rayons cosmiques d'énergie supérieure à 10 péta- les électrons volts (PeV, 1PeV) ont été déterminés = 1015eV) détecté.

Cette réalisation a été publiée sous la forme d'un article de couverture dans Bulletin scientifique Le 26 février.

La recherche a été réalisée grâce à une collaboration LHAASO dirigée par le professeur Cao Zhen en tant que porte-parole de l'Institut de physique des hautes énergies de l'Académie chinoise des sciences. Le Dr Gao Quandong, le Dr Li Cong, le professeur Liu Ruiyu et le professeur Yang Ruizi sont co-auteurs de cet article.

Les rayons cosmiques sont des particules chargées provenant de l’espace, principalement composées de protons. L’origine des rayons cosmiques est l’une des questions les plus importantes de l’astrophysique moderne. Les mesures des rayons cosmiques au cours des dernières décennies ont révélé une rupture d'environ 1 PeV dans le spectre énergétique (c'est-à-dire la distribution de l'abondance des rayons cosmiques en fonction de l'énergie des particules), appelée le « genou » du spectre énergétique des rayons cosmiques en raison de sa forme semblable à une articulation du genou.

La propagation des rayons cosmiques de très haute énergie dans l'espace interstellaire

Démonstration de la propagation des rayons cosmiques de haute énergie dans l'espace interstellaire. Crédit : China Media Group

Les scientifiques pensent que les rayons cosmiques dont l'énergie est inférieure à celle du « genou » proviennent d'objets astrophysiques situés dans l'univers. Voie LactéeLa présence du « genou » indique également que la limite d'énergie pour accélérer les protons provenant de la plupart des sources de rayons cosmiques dans la Voie lactée est d'environ quelques PeV. Cependant, l'origine des rayons cosmiques dans la région du « genou » reste un mystère non résolu et constitue l'un des sujets les plus intéressants de la recherche sur les rayons cosmiques ces dernières années.

READ  Le télescope James Webb scrute l'atmosphère "chaude" de Saturne, à 700 années-lumière

Découverte du super accélérateur de rayons cosmiques

LHAASO a détecté une structure géante de bulles de rayons gamma ultra-énergétiques dans la région de formation d'étoiles du Cygnus, avec plusieurs photons dépassant 1 PeV à l'intérieur de la structure, l'énergie la plus élevée atteignant 2,5 PeV, indiquant la présence d'un superaccélérateur de rayons cosmiques. À l'intérieur de la bulle, qui accélère en permanence les particules de rayons cosmiques à haute énergie avec une énergie allant jusqu'à 20 PeV et les injecte dans l'espace interstellaire. Ces rayons cosmiques à haute énergie entrent en collision avec le gaz interstellaire et produisent des rayons gamma. L'intensité des photons gamma est clairement liée à la répartition du gaz environnant, et un amas d'étoiles massif (liaison OB, Cygnus OB2) près du centre de la bulle est considéré comme un candidat prometteur pour un superaccélérateur de rayons cosmiques. Cygnus OB2 est constitué de nombreuses étoiles jeunes, chaudes et massives dont la température de surface dépasse environ 35 000°C (étoiles de type O) et 15 000°C (étoiles de type B).

Grand observatoire de douches aériennes à haute altitude dans le comté de Daocheng

Le grand observatoire des douches aériennes à haute altitude dans le comté de Daocheng, dans la province chinoise du Sichuan (sud-ouest). Crédit : China Media Group

La luminosité radiative de ces étoiles est des centaines, voire des millions de fois supérieure à celle du Soleil, et la pression de rayonnement massive emporte les matériaux de surface des étoiles, formant des vents stellaires dynamiques qui atteignent des vitesses de plusieurs milliers de kilomètres par seconde. La collision des vents stellaires avec le milieu interstellaire environnant et la violente collision des vents stellaires créent des sites idéaux pour une accélération efficace des particules. Il s’agit du premier superaccélérateur de rayons cosmiques identifié à ce jour. À mesure que le temps d'observation augmente, LHAASO devrait découvrir davantage d'accélérateurs de rayons cosmiques et, espérons-le, résoudre le mystère de l'origine des rayons cosmiques dans la Voie Lactée.

READ  Résoudre une partie du "problème solaire"

L'observation du LHAASO a également indiqué que le super accélérateur de rayons cosmiques à l'intérieur de la bulle augmente considérablement la densité des rayons cosmiques dans l'espace interstellaire environnant, dépassant de loin le niveau moyen des rayons cosmiques dans la Voie Lactée. L'extension spatiale de l'hyperdensité dépasse la plage observée pour les bulles, fournissant une explication possible de l'augmentation de l'émission diffuse de rayons gamma du plan galactique précédemment détectée par LHAASO.

Le professeur Elena Amato, astrophysicienne renommée de l'Institut national italien d'astrophysique (INAF), a souligné l'impact de cette découverte sur l'origine des rayons cosmiques en général. Elle a également commenté que ces résultats « ont non seulement un impact sur notre compréhension de l’émission diffuse, mais ont également des conséquences très pertinentes pour notre description du transport des rayons cosmiques (CR) dans la galaxie ».

Référence : « Bulle de rayons gamma ultra-énergétiques alimentée par la superstructure PeVatron » par la collaboration LHAASO, 23 décembre 2023, Bulletin scientifique.
est ce que je: 10.1016/j.scib.2023.12.040

Continue Reading

Trending

Copyright © 2023