Cet article a été révisé selon Science processus d’édition
Et Stratégies. éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :
Vérification des faits
Publication évaluée par des pairs
source fiable
Relecture
En travaillant avec Arabidopsis thaliana, un organisme modèle, les chercheurs de MSU ont découvert les contrôles biomoléculaires de l’un des systèmes qui régulent la mort cellulaire et la santé des plantes. Source : Kara Headley/Laboratoire de recherche sur les plantes MSU-DOE
× Fermer
En travaillant avec Arabidopsis thaliana, un organisme modèle, les chercheurs de MSU ont découvert les contrôles biomoléculaires de l’un des systèmes qui régulent la mort cellulaire et la santé des plantes. Source : Kara Headley/Laboratoire de recherche sur les plantes MSU-DOE
Des chercheurs de l’Université de l’État du Michigan ont fait une découverte qui pourrait aider à transformer l’interrupteur d’arrêt naturel des cellules végétales en un « interrupteur de vie » qui aiderait les cultures à mieux survivre aux défis posés par le changement climatique.
Il s’agit cependant d’une constatation fondamentale, partagée en substance dans la revue. Plantes naturellesqui a des implications dans toute la biologie sur la façon dont les organismes réagissent au stress associé à la surproduction de protéines par la cellule.
« La vie dépend de l’activité d’un organite appelé réticulum endoplasmique, ou ER », a déclaré Federica Brandisi, directrice du laboratoire qui a publié la nouvelle découverte.
Brandisi est professeur émérite de MSU et professeur de la MSU Research Foundation au département de biologie végétale et au laboratoire de recherche sur les centrales électriques de MSU.
« Le réticulum endoplasmique produit des molécules biologiques essentielles, notamment des lipides et un tiers des protéines utilisées par les cellules. Il facilite également la communication cellulaire avec l’environnement extérieur », a déclaré Brandizi. « Certaines situations physiologiques et stressantes peuvent conduire à une défaillance de la capacité de biosynthèse de cet organite, une condition connue sous le nom de stress ER, qui peut être fatale. »
« Ce que nous avons découvert est une voie spécifique et de nouveaux régulateurs dont on ne savait pas auparavant qu’ils étaient impliqués dans les réponses au stress d’urgence », a déclaré l’auteur principal de l’étude, Dai Kwan Kuo, professeur adjoint au laboratoire Brandisi de MSU. « Cette découverte ouvre de nouvelles portes et de nouvelles orientations en recherche. »
Crédit : Université de l’État du Michigan
Le stress et le kill switch cellulaire
Les cellules de chaque organisme eucaryote (plantes, champignons et animaux, y compris les humains) possèdent plusieurs mécanismes autodestructeurs qu’elles peuvent activer lorsqu’elles se trouvent dans des conditions environnementales défavorables.
Les cellules qui se sacrifient peuvent contribuer à maintenir l’organisme en bonne santé dans certaines conditions, en stoppant la propagation d’une maladie, par exemple. Mais dans d’autres circonstances, la mort au niveau cellulaire peut entraîner des dommages, des maladies, voire la mort de l’organisme.
« En comprenant les mécanismes d’autodestruction biomoléculaire dans les cellules, les chercheurs peuvent concevoir des tactiques pour éviter ou retarder l’activation d’une cellule en réponse à certains facteurs de stress », a déclaré Kuo.
Malheureusement, ces mécanismes sont largement opaques et très complexes. Heureusement, Kuo et ses co-auteurs, qui sont également membres du laboratoire de Brandisi, maîtrisent parfaitement la simplification. Jo Young Kim, associée de recherche postdoctorale, et Ethan Thibault, étudiant au doctorat, se joignent à Ko et Brandisi sur le projet.
Kuo a déclaré qu’il existe une interaction entre les gènes et l’activité d’une protéine qui transmet les signaux de stress au centre de commande de la cellule, ou noyau. « Lorsqu’une certaine voie de signalisation est activée, c’est comme basculer entre la vie et la mort lors d’une réponse au stress », a déclaré Ku.
Kuo et ses collègues ont conçu des expériences qui ont identifié les protéines qui régulent l’une de ces voies, ainsi que les gènes qui y sont associés.
« Dans cet article, nous avons tenté d’identifier les régulateurs d’une seule voie de signalisation », a déclaré Ku. « On ne sait pas grand-chose sur les protéines qui font quoi, où et quand. Nous voulons comprendre ce qu’elles font dans le temps et dans l’espace. »
Pour ce faire, Kuo et l’équipe se sont concentrés sur l’éclairage d’un mécanisme ou d’une voie unique en cas de stress d’urgence.
Des chercheurs de l’Université de Michigan ont développé un mutant génétique d’Arabidopsis thaliana dépourvu de la protéine IRE1, un important régulateur principal du stress du réticulum endoplasmique. Ces plantes présentaient des défauts de croissance (à gauche) dans des conditions de stress du réticulum endoplasmique par rapport à des conditions non stressées (à droite). Cependant, l’équipe a également montré que d’autres mutations du mutant IRE1 pourraient restaurer la réponse de la plante au stress à un niveau plus proche de la normale. Source : Dai Kwan Kuo/Laboratoire Brandisi
× Fermer
Des chercheurs de l’Université de Michigan ont développé un mutant génétique d’Arabidopsis thaliana dépourvu de la protéine IRE1, un important régulateur principal du stress du réticulum endoplasmique. Ces plantes présentaient des défauts de croissance (à gauche) dans des conditions de stress du réticulum endoplasmique par rapport à des conditions non stressées (à droite). Cependant, l’équipe a également montré que d’autres mutations du mutant IRE1 pourraient restaurer la réponse de la plante au stress à un niveau plus proche de la normale. Source : Dai Kwan Kuo/Laboratoire Brandisi
Mettre un organisme modèle au travail
Le réticulum endoplasmique est un organite utilisé par les cellules de tous les eucaryotes pour replier les protéines, entre autres. Dans des conditions normales, le besoin de la cellule de replier les protéines est équilibré par la capacité du réticulum endoplasmique à les replier. C’est comme conduire sur une autoroute avec un trafic léger, a déclaré Kuo.
Mais lorsque les cellules se développent ou sont exposées à certains stress, notamment à des attaques d’agents pathogènes, la demande de repliement des protéines dépasse leur capacité. Il en résulte un embouteillage pour les protéines exposées. Il s’agit d’un stress d’urgence, et lorsqu’il devient très grave, il peut être mortel.
Pour se concentrer sur l’une des voies utilisées par les cellules pour localiser ce point de basculement, l’équipe s’est tournée vers un organisme modèle, une plante connue sous le nom d’Arabidopsis thaliana. En utilisant une plante modèle comme le cresson, les scientifiques peuvent également commencer à identifier des gènes et des traits partagés ou conservés chez d’autres espèces.
« Ces processus sont hautement conservés, non seulement chez les plantes, mais aussi chez les animaux et tous les eucaryotes », a déclaré Kuo. « L’étude de ces processus dans un système modèle comme Arabidopsis présente l’avantage de nous permettre de mener des recherches rapidement en utilisant des ressources génomiques abondantes. »
L’équipe a cultivé des plantes Arabidopsis « normales » aux côtés d’autres souches présentant des mutations génétiques aléatoires. Finalement, l’équipe a créé des plantes présentant des milliers de modifications génétiques.
Les chercheurs ont ensuite observé comment les plantes mûrissaient après avoir été exposées à un composé qui inhibait le repliement des protéines. Autrement dit, les chercheurs ont essentiellement déclenché un embouteillage sur l’autoroute ER.
Alors que les plantes normales peuvent résister à ce stress, un mutant particulier dépourvu d’une protéine connue sous le nom d’IRE1 – abréviation de « Inositol Requiring Enzyme 1 » – ne le peut pas. Mais d’autres mutations de cette variante pourraient ramener la réponse de la plante au stress d’urgence à un niveau plus proche de la normale.
Des chercheurs de l’État du Michigan affirment qu’il y a encore beaucoup à apprendre sur la vie et la mort cellulaire en utilisant l’organisme modèle Arabidopsis thaliana. Crédit : Alina Kravchenko/Wikimedia Commons
× Fermer
Des chercheurs de l’État du Michigan affirment qu’il y a encore beaucoup à apprendre sur la vie et la mort cellulaire en utilisant l’organisme modèle Arabidopsis thaliana. Crédit : Alina Kravchenko/Wikimedia Commons
« Nous avons cette plante mutante qui est censée être malade en cas de stress d’urgence parce qu’elle ne possède pas les protéines nécessaires pour répondre au stress d’urgence », a déclaré Kuo. « Mais en mutant le mutant, nous avons trouvé une autre mutation qui pourrait inverser la maladie. »
En particulier, ce mutant plus flexible a perdu une protéine supplémentaire appelée PIR1 (abréviation de « Phosphatase type 2CA Interacting Ring Finger Protein 1 »). En collaboration avec le Centre de soutien technologique à la recherche, le Centre de génomique et le Centre de spectrométrie de masse et de métabolisme de MSU, les chercheurs ont également exploré la génétique associée et les signaux moléculaires qui déterminent le sort des cellules dans des conditions de stress aux urgences.
Bien qu’il s’agisse d’une voie dans une plante, cette plante a la force d’être un organisme modèle comme Arabidopsis. Par exemple, la méthodologie de l’équipe pourrait être utilisée pour rechercher d’autres voies de stress ER importantes trouvées chez d’autres eucaryotes, tels que les humains.
Bien que le PIR1 ne se trouve que dans les plantes, il est présent dans des centaines d’espèces, y compris des cultures comme le soja.
« Vous pourriez donc commencer à réfléchir à la manipulation de l’activité génétique de plantes comme le soja pour les rendre plus résilientes au changement climatique », a déclaré Kuo.
« Bien que PIR1 ne soit pas une protéine conservée en dehors du règne végétal, il est probable que les espèces non végétariennes utilisent des mécanismes similaires à ceux qui informent PIR1 pour contrôler les issues de vie ou de mort », a déclaré Brandisi. « Par conséquent, les résultats de nos recherches pourraient également influencer la recherche sur la gestion du stress des urgences chez les espèces non végétariennes. »
Pour Ko, il existe encore bien d’autres pistes intéressantes à explorer chez Arabidopsis thaliana même. Par exemple, les racines des plantes contiennent environ dix types différents de cellules, et comprendre si et comment cette voie de signalisation fonctionne différemment dans différentes cellules pourrait avoir des implications sur la santé cellulaire.
« Parce que le RE est l’usine de biosynthèse des cellules, comprendre comment la production de protéines est gérée dans le RE a des implications importantes pour améliorer la qualité de la biomasse végétale et notre capacité à utiliser les plantes comme bioréacteurs à grande échelle pour produire des protéines pharmaceutiques recombinantes, telles que des anticorps et des protéines. vaccins », a déclaré Brandisi.
Cette découverte est donc un peu comme les racines d’une plante en train de germer : son extension ne manquera pas de s’élargir et de s’approfondir.
Plus d’information:
Dae-Kwan Ko et al., Le système protéasome IRE1 contrôle la détermination du devenir cellulaire en cas de stress protéotoxique non résolu dans le réticulum endoplasmique végétal, Plantes naturelles (2023). est ce que je: 10.1038/s41477-023-01480-3
Une carte simulée de la Voie lactée telle qu’elle apparaît dans les ondes gravitationnelles a donné une forte impression de ce que les futurs détecteurs spatiaux observeront.
Plus de 90 événements d’ondes gravitationnelles ont été détectés jusqu’à présent par un trio de détecteurs au sol : le Laser Interferometer Gravitational-Wave Observatory (LIGO) aux États-Unis, Virgo en Italie et KAGRA au Japon. Tous ces événements détectés sont des fusions d’amas d’étoiles trous noirs Ouah Étoiles à neutrons Dans les galaxies lointaines. Aucun événement d’onde gravitationnelle provenant de notre planète n’a été trouvé voie Lactée.
Cependant, notre galaxie regorge de soi-disant binaires ultra-petits, qui existaient autrefois Étoiles binaires Mais il est depuis devenu un vestige stellaire.
à propos de:L’univers bourdonne d’ondes gravitationnelles. C’est pourquoi les scientifiques sont si enthousiasmés par cette découverte
« Les systèmes binaires… remplissent la Voie lactée, et nous nous attendons à ce que beaucoup d’entre eux contiennent des objets compacts tels que… Naines blanches, Étoiles à neutrons Et trous noirs « Sur des orbites étroites », a déclaré Cecilia Cerenti de l’Université du Maryland. Centre de vol spatial Goddard de la NASAdans déclaration. «Mais nous devons espace Observatoire pour les « entendre » car Ondes gravitationnelles Bourdonnez à des fréquences trop basses pour les détecteurs au sol.
Atterrir-Observatoires associés tels que Légo Capable de détecter les ondes gravitationnelles avec des fréquences comprises entre 5 et 20 000 Hz. Les binaires ultracompacts de notre galaxie, lorsqu’ils tournent autour les uns des autres et finissent par fusionner, ont des fréquences de l’ordre du millihertz.
Plusieurs détecteurs d’ondes gravitationnelles spatiaux sont en préparation. le Agence spatiale européenneL’antenne spatiale à interféromètre laser (LISA) est à l’avant-garde et devrait être lancée dans les années 2030, tandis que les scientifiques chinois disposent également de deux concepts de mission, respectivement TianQin et Taiji.
Sherenti fait partie d’une équipe dirigée par Caitlin Zikirkzis du laboratoire d’astrophysique gravitationnelle de la NASA Goddard, qui a maintenant simulé l’intensité et la fréquence des ondes gravitationnelles émises par des binaires ultracompacts dans la Voie lactée. L’image résultante montre comment des observatoires comme LISA seront capables d’étudier la Voie lactée avec les ondes gravitationnelles, tout comme les astronomes l’étudient avec les rayons X. Rayons gamma Ainsi de suite. L’image simulée montre des binaires ultracompacts concentrés dans le plan du disque spiralé de la Voie lactée et s’étendant vers l’extérieur. Halo de galaxie.
« Notre image ressemble directement à la vue du ciel entier dans un certain type de lumière, comme la lumière visible, infrarouge ou les rayons X », a déclaré James Ira Thorpe, membre de l’équipe, également basé à Goddard de la NASA. « La promesse des ondes gravitationnelles est que nous pouvons les observer Univers « D’une manière complètement différente, et cette photo me rappelle vraiment cela. »
Jusqu’à présent, les astronomes ne connaissent que quelques binaires ultra-compacts avec des périodes orbitales inférieures à une heure, qui placeraient les objets compacts suffisamment proches les uns des autres pour émettre des ondes gravitationnelles détectables. Ils sont difficiles à trouver car les étoiles à neutrons et les trous noirs n’émettent pas beaucoup de lumière. C’est l’endroit Lisa À venir : les binaires ultra-petits devraient briller dans les ondes gravitationnelles, permettant à LISA d’en détecter des dizaines de milliers.
Plus la période orbitale d’un binaire ultracompact est courte, plus la fréquence est élevée et l’amplitude des ondes gravitationnelles qu’il émet est faible. S’ils sont vraiment proches l’un de l’autre, il peut y avoir un certain transfert de masse entre les deux objets, que les astronomes peuvent suivre à l’aide de télescopes optiques, à rayons X et gamma. Les scientifiques appellent cela une fusion Électromagnétique et les observations des ondes gravitationnelles sous forme de « messages multiples ». Astronomie« .
Les détails de l’image simulée ont été publiés dans un document de recherche en Revue astronomique Juin dernier.
Cet article a été révisé selon Science Processus d’édition
Et Stratégies. Éditeurs Les fonctionnalités suivantes ont été mises en avant tout en garantissant la crédibilité du contenu :
Vérification des faits
source fiable
Relecture
Un modèle réduit du véhicule Mars Ascent est chargé par l’ingénieur d’essai en soufflerie Sam Schmitz dans la soufflerie à trois vagues du Marshall Space Flight Center de la NASA pour des tests. Le tunnel de 14′ x 14′ a été utilisé pour tester les configurations des lanceurs pour Artemis, Redstone, Jupiter-C, Saturn et plus encore. Crédit : NASA/Jonathan Dale
× Fermer
Un modèle réduit du véhicule Mars Ascent est chargé par l’ingénieur d’essai en soufflerie Sam Schmitz dans la soufflerie à trois vagues du Marshall Space Flight Center de la NASA pour des tests. Le tunnel de 14′ x 14′ a été utilisé pour tester les configurations des lanceurs pour Artemis, Redstone, Jupiter-C, Saturn et plus encore. Crédit : NASA/Jonathan Dale
L’équipe MAV (Mars Ascent Vehicle) a récemment terminé des essais en soufflerie au Marshall Space Flight Center de la NASA, dans une installation qui a joué un rôle important dans les missions de la NASA depuis le programme Apollo.
La même installation qui a fourni des tests précieux pour les missions de la NASA en orbite terrestre basse et sur la Lune aide désormais l’agence à préparer le lancement de sa première fusée depuis Mars. Le MAV est un élément important du plan conjoint entre la NASA et l’ESA (Agence spatiale européenne) visant à amener sur Terre des échantillons martiens scientifiquement sélectionnés au début des années 2030.
Le test s’est déroulé du 10 au 15 juillet et a permis à l’équipe de collecter des données aéroacoustiques pour les aider à comprendre la dynamique de conception du MAV à l’aide de modèles réduits imprimés en 3D.
Un modèle réduit du Mars Ascent Vehicle a été testé dans la soufflerie à trois vagues de Marshall. Les sections du tunnel ne mesurent que 14 pouces de haut et de large, mais peuvent atteindre des vitesses de vent allant jusqu’à Mach 5. Crédit image : NASA
« Grâce à ces tests réussis, nous améliorons notre compréhension de l’aérodynamique, des performances intégrées, de la contrôlabilité et du chargement du véhicule du MAV », a déclaré Steve Gaddis, chef de projet MAV. « Nous utiliserons les résultats pour guider notre conception et apporter les améliorations nécessaires au puissant MAV nécessaire pour mettre en orbite des échantillons de roches martiennes. »
La section d’essai de la soufflerie Marshall ne mesure que 24 pouces de long, 14 pouces de haut et 14 pouces de large. Cependant, il peut atteindre des vitesses hypersoniques allant jusqu’à Mach 5 (environ 3 800 mph) et teste depuis longtemps des fusées célèbres, notamment Redstone, Jupiter-C et Saturn, ainsi que la navette spatiale et le SLS (Space Launch System). dessins. .
Cette illustration montre le Mars Ascent Vehicle (MAV) de la NASA en vol propulsé. Le MAV transportera des tubes contenant des échantillons de roches et de sol martiens vers l’orbite martienne, où le vaisseau spatial Earth Return Orbiter de l’ESA les enfermera dans une capsule de confinement hautement sécurisée et les livrera sur Terre. Crédit : NASA
× Fermer
Cette illustration montre le Mars Ascent Vehicle (MAV) de la NASA en vol propulsé. Le MAV transportera des tubes contenant des échantillons de roches et de sol martiens vers l’orbite martienne, où le vaisseau spatial Earth Return Orbiter de l’ESA les enfermera dans une capsule de confinement hautement sécurisée et les livrera sur Terre. Crédit : NASA
L’équipe a testé des modèles réduits sous plusieurs angles à l’intérieur de la soufflerie pour voir comment le flux d’air pourrait affecter la structure du MAV, a déclaré Annie Katherine Barnes, responsable de la division aéroacoustique du MAV, qui a été co-responsable de la campagne d’essais de juillet. Barnes l’a comparé aux turbulences dans un avion.
« Nous recherchons des zones d’écoulement turbulent pour les lanceurs », a-t-elle déclaré. « Nous recherchons des oscillations de choc et de vastes zones de fluctuations de pression susceptibles de provoquer une réponse structurelle. »
L’équipe utilisera les données de la campagne d’essais de juillet et d’autres analyses pour mieux estimer les environnements que le MAV rencontrera lorsqu’il deviendra le premier véhicule à être lancé depuis la surface d’une autre planète.
Le MAV soutient la campagne prévue de retour d’échantillons sur Mars, qui amènera sur Terre des échantillons scientifiquement sélectionnés pour étude à l’aide des instruments les plus avancés au monde. Ce partenariat stratégique avec l’Agence spatiale européenne développe des technologies et des conceptions préliminaires pour des missions qui permettront de récupérer les premiers échantillons d’une autre planète. Les échantillons actuellement collectés par le rover Perseverance de la NASA alors qu’il explore un ancien delta de rivière ont le potentiel de révéler l’évolution précoce de Mars, y compris la possibilité d’une vie microbienne ancienne.
Le MAV, géré par Marshall, sera lancé à bord d’un échantillon d’atterrisseur depuis la Terre pour un voyage de deux ans vers Mars. Il restera sur Mars environ un an pour recevoir les échantillons collectés par Perseverance.
Une fois que le bras de transfert d’échantillons de l’atterrisseur aura chargé les échantillons dans un conteneur sur la fusée, le MAV sera lancé en orbite autour de la planète, libérant le conteneur d’échantillons pour que le Earth Return Vehicle développé par l’ESA puisse les capturer.
Les échantillons devraient atteindre la Terre au début des années 2030. Le programme Mars Sample Return est géré par le Jet Propulsion Laboratory de la NASA en Californie du Sud.
Une étude récente menée par des chercheurs de l’Université Northwestern bouleverse les règles astrophysiques du jeu sur la manière dont les trous noirs supermassifs sont alimentés, révélant que ces géants cosmiques se déforment et déchirent violemment l’espace-temps pour consommer la matière à un rythme étonnamment rapide.
Cette découverte pourrait aider à résoudre des mystères de longue date sur des phénomènes tels que les quasars « d’apparence variable », qui éclatent soudainement puis disparaissent sans explication, remettant potentiellement en question des décennies de théories acceptées.
Pendant de nombreuses années, la sagesse conventionnelle a supposé que les trous noirs « mangeaient » et absorbaient progressivement et systématiquement la matière à un rythme glacial sur des dizaines de milliers d’années. Cependant, à l’aide de simulations 3D haute résolution, des chercheurs de l’Université Northwestern ont brossé un tableau très différent.
Selon cette nouvelle étude publiée le 20 septembre Journal d’astrophysiqueUn trou noir supermassif pourrait accomplir un cycle alimentaire en quelques mois seulement, contredisant les estimations précédentes.
« La théorie classique du disque d’accrétion prédit que le disque évolue lentement. » Nick Kazétudiant diplômé en astronomie à l’Université Northwestern Collège des arts et des sciences Weinberg Qui a dirigé l’étude en A déclaration. « Mais certains quasars – résultant de trous noirs mangeant le gaz de leurs disques d’accrétion – semblent changer radicalement avec le temps, au fil des mois, voire des années. »
« Cette différence est assez drastique. Il semble que l’intérieur du disque, où arrive la majeure partie de la lumière, soit détruit puis régénéré. La théorie classique du disque d’accrétion ne peut pas expliquer cette différence drastique. Mais les phénomènes que nous observons dans nos simulations peuvent l’expliquer. La luminosité et la gradation correspondent Dommages rapides aux zones internes du disque.
Utiliser l’équipe de recherche sommetl’un des plus grands superordinateurs du monde, hébergé au laboratoire national d’Oak Ridge, a exécuté des simulations de magnétohydrodynamique générale en 3D (GRMHD) pour explorer comment les trous noirs se dévorent sans pitié.
Le supercalculateur a permis aux chercheurs d’intégrer la dynamique des gaz, les champs magnétiques et la relativité générale, fournissant ainsi une vue complète du comportement des trous noirs et fournissant l’une des simulations de disques d’accrétion à la plus haute résolution jamais produite.
Grâce à des simulations, les chercheurs ont découvert que les trous noirs « déforment » l’espace-temps qui les entoure, déchirant le disque d’accrétion – un violent vortex de gaz qui les alimente – en sous-disques interne et externe.
Ce qui se passe ensuite est un processus presque cinématographique de dévoration, de reconditionnement et de répétition. Le trou noir consomme le disque interne, puis les débris du sous-disque externe se déversent vers l’intérieur pour remplir l’espace, pour être dévorés à leur tour.
« Les trous noirs sont des objets de la relativité générale extrême qui affectent l’espace-temps qui les entoure », a déclaré Kaz. « Ainsi, lorsqu’il tourne, il tire sur l’espace qui l’entoure comme un carrousel géant et le force à tourner également – un phénomène appelé » traînée de trame « . Cela crée un effet très fort à proximité du trou noir, qui devient de plus en plus faible. plus loin. »
Ces cycles rapides de « manger-remplir-manger » expliquent probablement le comportement déroutant des quasars dits « à apparence variable ».
Un quasar, abréviation de « source radio quasar-stellaire », est un noyau de galaxie intensément lumineux alimenté par un trou noir supermassif au centre galactique. Les quasars, qui émettent une énergie qui pourrait dépasser celle d’une galaxie entière, font partie des objets les plus brillants et les plus actifs de l’univers, souvent visibles à des milliards d’années-lumière.
Les quasars à « apparence variable » sont un sous-ensemble de quasars qui affichent des changements de luminosité inhabituellement rapides et drastiques, semblent s’allumer et s’éteindre et subissent d’importants changements de luminosité ou d’apparence générale. Ces changements se produisent sur de courtes périodes, souvent de quelques mois à quelques années seulement.
Les fluctuations erratiques des quasars d’apparence variable ont remis en question les théories astrophysiques traditionnelles, ce qui en fait l’objet d’études intenses alors que les chercheurs cherchent à comprendre les mécanismes à l’origine de transitions aussi spectaculaires.
« La région interne du disque d’accrétion, d’où provient l’essentiel de la luminosité, pourrait disparaître complètement, très rapidement, en quelques mois », a expliqué Kaz. « Nous le voyons disparaître complètement. Le système cesse de s’éclairer. Puis il se rallume et le processus se répète. La théorie conventionnelle n’a aucun moyen d’expliquer pourquoi il a disparu en premier lieu, ni comment il se remplit si rapidement. »
Certains chercheurs ont fait censé Les quasars d’apparence variable pourraient être des étoiles qui sont passées près du trou noir et ont été déchirées. D’autres ont Proposition Ces phénomènes n’étaient pas des quasars, mais plutôt de puissantes supernovae.
Grâce à de récentes simulations à haute résolution, les chercheurs pensent que la disparition et la réapparition rapides de quasars d’apparence variable peuvent être liées à l’évolution rapide de la région interne de leurs disques d’accrétion.
Selon Kaz, les simulations montrent que la région où les sous-disques interne et externe se séparent est l’endroit où commence réellement la « frénésie alimentaire » du trou noir.
« Il existe une compétition entre la rotation du trou noir et la friction et la pression à l’intérieur du disque », a expliqué Kaz. « La zone de rupture est l’endroit où le trou noir gagne. Les disques interne et externe entrent en collision les uns avec les autres. Le disque externe rase les couches du disque interne, les poussant vers l’intérieur.
Les modèles traditionnels supposent souvent que les disques d’accrétion sont organisés et cohérents avec la rotation du trou noir. Cependant, Kaz affirme que des simulations récentes montrent que cette théorie est probablement incorrecte.
« Pendant des décennies, les gens ont supposé que les disques d’accrétion correspondaient à la rotation des trous noirs », a déclaré Kaz. « Mais le gaz qui alimente ces trous noirs ne sait pas nécessairement dans quelle direction le trou noir tourne, alors pourquoi s’alignerait-il automatiquement ? Changer l’alignement change radicalement la donne. »
Au lieu de se déplacer uniformément, les simulations montrent que les sous-disques interne et externe vacillent indépendamment à des vitesses et à des angles différents autour du trou noir.
Les disques internes sont soumis à des oscillations beaucoup plus rapides que leurs homologues externes. Cette variation des forces de rotation provoque la déformation ou la déformation de l’ensemble du disque d’accrétion.
En conséquence, les molécules de gaz provenant de différentes zones du disque entrent en collision les unes avec les autres, produisant de vifs éclats de lumière et d’énergie. Ces collisions à haute énergie agissent comme un propulseur, poussant la matière de plus en plus près de la gravité du trou noir.
Ainsi, au lieu de s’écouler proportionnellement vers le centre du trou noir comme de l’eau tourbillonnante dans un égout, les chercheurs affirment que les sous-disques indépendants du trou noir se balancent comme les roues d’un gyroscope.
En plus de permettre une meilleure compréhension des habitudes alimentaires des trous noirs, les chercheurs espèrent que les nouvelles simulations fourniront des moyens intéressants d’étudier plus en profondeur la nature de ces mystérieux géants, qui ont la capacité de déformer la structure même de l’espace-temps.
« Il est finalement important de pouvoir lier nos résultats à des observations, ce qui peut être réalisé en produisant des observations synthétiques à partir de résultats de simulation tels que ceux présentés ici », ont souligné les chercheurs dans leurs remarques finales.
Tim McMillan est un responsable des forces de l’ordre à la retraite, journaliste d’investigation et co-fondateur de The Debrief. Ses écrits se concentrent généralement sur la défense, la sécurité nationale, la communauté du renseignement et des sujets liés à la psychologie. Vous pouvez suivre Tim sur Twitter :@LtTimMcMillan. Tim peut être contacté par e-mail : [email protected] ou par e-mail crypté :[email protected]