Connect with us

science

Faire fonctionner le télescope à grand champ

Published

on

Faire fonctionner le télescope à grand champ

La galaxie d’Andromède (à gauche) photographiée par le télescope Wide Field Survey (à droite) dans la province du Qinghai. [Photo/Xinhua]

L’installation est un outil puissant pour les enquêtes dans le domaine temporel dans l’hémisphère Nord.

Une image époustouflante de la galaxie d’Andromède, située à plus de deux millions d’années-lumière de la Terre, a été publiée pour coïncider avec le fonctionnement du télescope à grand champ le plus puissant de l’hémisphère nord, démontrant ainsi son potentiel.

Le télescope chinois d’étude à grand champ, développé par l’Université des sciences et technologies de Chine et l’Observatoire de la Montagne Pourpre de l’Académie chinoise des sciences, est entré en service dimanche dans la province du Qinghai, dans le nord-ouest de la Chine.

Le télescope, également connu sous le nom de MOSI Survey Telescope, améliorera considérablement les capacités de la Chine en matière de recherche astronomique dans le domaine temporel, selon l’académie.

Mozi était un ancien philosophe chinois qui aurait été le premier à mener des expériences optiques dans l’histoire.

Le télescope est situé au sommet du mont Saixiting, près de la ville de Linghu, dans la préfecture autonome mongole et tibétaine de Haixi, au Qinghai. La ville est connue comme le « camp martien » de la Chine en raison de son paysage désertique étrangement érodé qui ressemble beaucoup à la surface de la planète rouge.

Selon CAS, le WFST est équipé d’un télescope optique de 2,5 mètres et d’une caméra de 765 millions de pixels, ce qui lui confère une puissante puissance de balayage qui lui permet d’observer l’ensemble du ciel nordique toutes les trois nuits.

La galaxie d’Andromède est la grande galaxie spirale la plus proche de la Voie lactée et possède une structure et une métallicité similaires, ce qui en fait un objet de recherche idéal pour explorer la formation et l’évolution de la Voie lactée et des galaxies similaires.

WFST dispose d’un large champ de vision et de capacités d’imagerie haute résolution, lui permettant de capturer des images multicolores de la galaxie d’Andromède et des régions périphériques. Le télescope a créé l’image à partir de 150 images prises au cours de plusieurs nuits d’observation.

Selon CAS, le télescope devrait jouer un rôle important dans les domaines de l’astronomie temporelle à haute énergie, de la structure des galaxies et de la cosmologie en champ proche.

Le Science and Technology Daily a cité Cheng Xianzhong, concepteur en chef adjoint du WFST, disant que le télescope possède de fortes capacités de balayage et peut obtenir une grande quantité de données d’observation d’images pour la recherche astronomique.

« En balayant et en comparant à plusieurs reprises les images du ciel, nous pouvons détecter les objets du système solaire se déplaçant sur la sphère céleste, ainsi que détecter les objets célestes présentant des différences de luminosité », a-t-il déclaré.

« Grâce au télescope, en collectant et en empilant les données d’observation, nous pourrons améliorer la profondeur de détection, observer les objets célestes les plus sombres et les plus éloignés, et acquérir une compréhension plus approfondie de la structure de la Voie lactée et de l’univers voisin », a déclaré Cheng. dit.

READ  Les nuages ​​de Vénus pourraient soutenir la vie
Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

La conférence de la Mars Society se tiendra en ligne du 5 au 8 octobre

Published

on

La conférence de la Mars Society se tiendra en ligne du 5 au 8 octobre

La Mars Society est sur le point de tenir sa conférence annuelle, en personne et en ligne, et vous pouvez regarder le tout virtuellement en vous inscrivant.

Vingt-sixième édition internationale Mars La conférence communautaire débute jeudi 5 octobre à l’Arizona State University à Tempe. La réunion comprend une liste d’orateurs qui parlent de sujets d’actualité Missions sur MarsTâches analogiques et plans pour l’avenir.

Continue Reading

science

La nébuleuse brille en rose-rouge sur cette superbe nouvelle image du télescope de l’ESO

Published

on

La nébuleuse brille en rose-rouge sur cette superbe nouvelle image du télescope de l’ESO

Une nébuleuse rouge rosé occupe le devant de la scène dans une nouvelle image de l’Observatoire européen austral (ESO).

Le nuage en expansion de poussière et de gaz, connu sous le nom d’IC1284, est une émission nébuleuseUn nuage lumineux et diffus de gaz ionisé qui émet sa propre lumière. Cette nébuleuse en émission, au centre de l’image, brille en rouge à cause de l’activité une étoile Formation et fusion d’hydrogène dans la région.

Continue Reading

science

Il tourne autour des secrets du trou noir

Published

on

Il tourne autour des secrets du trou noir

Représentation schématique du modèle de disque d’accrétion incliné. L’axe de rotation du trou noir est censé être droit de haut en bas dans cette illustration. La direction du jet est approximativement perpendiculaire au plan du disque. Le désalignement entre l’axe de rotation du trou noir et l’axe de rotation du disque fait tourner et projeter le disque. Crédit : Yuzhou Cui et al. (2023), Intouchable Lab@Openverse et Zhejiang Lab

Des chercheurs confirment la rotation de la galaxie massive M87 Le trou noir En surveillant l’oscillation dans son plan, à l’aide des données de deux décennies de radiotélescopes mondiaux. Cette découverte représente une avancée majeure dans l’étude des trous noirs.

Le trou noir supermassif au cœur de la galaxie M87, rendu célèbre par la première image de l’ombre d’un trou noir, a produit une autre première : il a été confirmé que les jets émanant du trou noir vacillaient, fournissant une preuve directe de l’existence du trou noir. Rotation.

Les trous noirs supermassifs, monstres des milliards de fois plus lourds que le soleil qui mangent tout ce qui les entoure, y compris la lumière, sont difficiles à étudier car aucune information ne peut s’échapper de l’intérieur. En théorie, il existe très peu de propriétés que nous pouvons espérer mesurer. Une propriété observable est la rotation, mais en raison des difficultés impliquées, il n’y a pas eu d’observations directes de la rotation du trou noir.

Deux décennies d’observations apportent des preuves

À la recherche de preuves de la rotation d’un trou noir, une équipe internationale a analysé les données d’observation de la galaxie M87 sur deux décennies. Située à 55 millions d’années-lumière en direction de la constellation de la Vierge, cette galaxie contient un trou noir 6,5 milliards de fois plus massif que le Soleil, le même trou noir qui a produit la première image de l’ombre d’un trou noir par le télescope Event Horizon ( ISE). ) en 2019. Le trou noir supermassif de M87 est connu pour avoir un disque d’accrétion, qui alimente le trou noir en matière, et un jet, dans lequel la matière est éjectée à proximité du trou noir à une vitesse proche de la vitesse de la lumière.

Cellule M87

(Panneau supérieur) Cellule M87 à 43 GHz en moyenne tous les deux ans de 2013 à 2018. Les années correspondantes sont indiquées dans le coin supérieur gauche. Les flèches blanches indiquent l’angle de position du plan dans chaque sous-parcelle. (Panneau inférieur) Evolution observée de la tendance des jets entre 2000 et 2022. Les points verts et bleus ont été obtenus à partir d’observations aux fréquences 22 et 43 GHz. La ligne rouge représente une courbe sinusoïdale ajustée sur une période de 11 ans. Crédit : Yuzhou Cui et al. (2023)

L’équipe a analysé les données sur 170 périodes collectées par le réseau VLBI de l’Asie de l’Est (EAVN), le réseau de lignes de base très longues (VLBA), le réseau commun de KVN et VERA (KaVA) et le réseau presque mondial de l’Asie de l’Est vers l’Italie (EATING). ). Réseau VLBI Au total, plus de 20 radiotélescopes du monde entier ont contribué à cette étude.

Résultats et implications

Les résultats montrent que les interactions gravitationnelles entre le disque d’accrétion et la rotation du trou noir font osciller ou avancer la base du flux, de la même manière que les interactions gravitationnelles au sein du système solaire font bouger la Terre. L’équipe a réussi à relier la dynamique des flux au trou noir supermassif central, fournissant ainsi la preuve directe que le trou noir est effectivement en rotation. Le jet change de direction d’environ 10 degrés avec une précession de 11 ans, ce qui est cohérent avec les simulations théoriques du supercalculateur menées par ATERUI II à l’Observatoire astronomique national du Japon (NAOJ).

« Nous sommes satisfaits de ce résultat important », déclare Yuzhou Cui, auteur principal de l’article résumant les recherches qu’elle a commencées en tant qu’étudiante diplômée au NAOJ avant de rejoindre le laboratoire du Zhejiang en tant que chercheuse postdoctorale. « Étant donné que le désalignement entre le trou noir et le disque est relativement faible et que la période de précession est d’environ 11 ans, une collecte de données à haute résolution permettant de suivre la structure de M87 sur deux décennies et une analyse complète sont nécessaires pour obtenir ce résultat. »

« Après avoir réussi à visualiser le trou noir de cette galaxie grâce à l’EHT, la question de savoir si ce trou noir tourne ou non est devenue le principal intérêt des scientifiques », explique le Dr Kazuhiro Hada du NAOJ. « Maintenant, l’anticipation s’est transformée en certitude. Ce monstrueux trou noir est déjà en train de tourner. »

« Il s’agit d’une percée scientifique passionnante qui a finalement été révélée grâce à des années d’observations conjointes menées par une équipe internationale de chercheurs de 45 institutions à travers le monde, travaillant ensemble comme une seule équipe », a déclaré le Dr Motoki Kino de l’Université Kogakuin, coordinateur du projet VLBI. pour l’Asie de l’Est. Groupe de travail sur la science des noyaux galactiques du réseau actif. « Nos données d’observation s’adaptant parfaitement à une simple courbe sinusoïdale nous apportent de nouvelles avancées dans notre compréhension du trou noir et du système à réaction. »

Pour en savoir plus sur cette découverte, voir Vérification de la rotation d’un trou noir supermassif.

Référence : « La buse à jet se connectant à un trou noir rotatif dans M87 » par Yucho Kuei, Kazuhiro Hada, Tomohisa Kawashima, Motoki Kino, Weikang Lin, Yusuke Mizuno, Hyunwook Ru, Markei Honma, Kono Yi, Jintao Yu, Jongho Park, Wu Jiang, Zhiqiang Chen, Evgenia Kravchenko, Juan Carlos Algaba, Xiaoping Cheng, Eli Zhou, Gabriele Giovannini, Marcello Giroletti, Taehyun Jung, Ru Sin Lu, Kotaro Ninuma, Jungwan Oh, Ken Ohsuga, Satoko Sawada Satoh, Bong Won Son, Hiroyuki R . Takahashi, Meeko Takamura, Fumi Tazaki, Sasha Tripp, Kiyoaki Wajima, Kazunori Akiyama, Tao An, Keiichi Asada, Salvatore Botaccio, Do Young-byun, Lang Kui, Yoshiaki Hagiwara, Tomoya Hirota, Jeffrey Hodgson, Noriyuki Kawaguchi, Jae-Young Kim, Sang Song Lee, Ji-Won Lee, Jeong-Ae Lee, Giuseppe Maccaferri, Andrea Melis, Alexei Melnikov, Carlo Migoni, Si-Jin Oh, Koichiro Sugiyama, Xuezheng Wang, Yingkang Zhang, Chung Chen, Jo-Yun Hwang, Dong-Kyu Jung, Heo-Ryung Kim, Jeong Suk Kim, Hideyuki Kobayashi, Bin Li, Guangwei Li, Xiaofei Li, Xiong Liu, Qinghui Liu, Xiang Liu, Chung Sik Oh, Tomoaki Aoyama, Duke Jiu Ruo, Jinqing Wang, Na Wang, Xiqiang Wang, Bo Xia, Hao Yan, Jae-hwan Yum, Yoshinori Yonekura, Jianping Yuan, Hua Zhang, Rongping Zhao, Yi Zhong, 27 septembre 2023, nature.
est ce que je: 10.1038/s41586-023-06479-6

READ  Écoutez le son d'un diable de poussière ondulant sur Mars : ScienceAlert
Continue Reading

Trending

Copyright © 2023