Connect with us

science

La perte de la Russie est le gain du Royaume-Uni pour le spectromètre infrarouge du rover martien

Published

on

La perte de la Russie est le gain du Royaume-Uni pour le spectromètre infrarouge du rover martien

Le ministre de l’Espace, Andrew Griffiths, a annoncé qu’une équipe britannique avait reçu 10 millions de livres sterling pour remplacer les composants russes du rover, qui recherchera des signes de vie sur la planète rouge.

Plus précisément, le nouveau financement permettra à une équipe – dirigée par l’Université d’Aberystwyth – de construire le spectromètre infrarouge ExoMars (ISEM) afin que la mission puisse retrouver tout son potentiel scientifique.

Le projet, financé par un montant supplémentaire de 10,7 millions de livres sterling de l’Agence spatiale britannique et dirigé par l’Université d’Aberystwyth, comprendra :

L’université galloise travaillera avec la même équipe du Mullard Space Science Laboratory de l’University College London (UCL) qui a dirigé la conception et la construction du système de caméra panoramique du rover, PanCam. Le système identifiera les minéraux, permettant au rover de forer pour obtenir des échantillons à analyser par d’autres instruments embarqués.

La machine s’appelait Enfys, ce qui signifie « arc-en-ciel » en gallois.

« Il est passionnant d’améliorer la puissance scientifique des caméras visuelles grand angle et haute résolution PanCam tout en améliorant la reconnaissance des métaux dans l’infrarouge grâce à Enfys. » Il a dit Professeur Andrew Coates (Mullard Space Science Laboratory de l’University College de Londres), chercheur principal de PanCam sur le rover Rosalind Franklin. « Notre équipe est ravie d’appliquer l’expertise de PanCam à Enfys, pour l’environnement difficile de la surface martienne. Nous attendons avec impatience la science et les opérations conjointes avec Enfys. »

La PanCam est illustrée ci-dessous.

Le Dr Matt Gunn d’Aberystwyth a déclaré : « Nous avons beaucoup appris au cours du développement et des tests de PanCam, et c’est un grand honneur pour nous de diriger une fantastique équipe de personnes qui mettront à nouveau ces connaissances en pratique pour développer un nouvel outil pour la mission. » Université, chercheur principal à Enfys.

Le Dr Gunn est représenté ci-dessus avec le nouveau spectromètre infrarouge en cours de développement, aux côtés d’un modèle grandeur nature du rover Rosalind Franklin de l’Université d’Aberystwyth.

READ  Cet astéroïde géocroiseur pourrait être un gros morceau sorti de la lune

Construit au Royaume-Uni

A noter que le véhicule (photo) a en réalité été construit par Airbus, à Stevenage, pour le programme de l’Agence spatiale européenne. Son lancement était prévu en 2022 avant l’annulation de la coopération avec l’agence spatiale russe à la suite de l’invasion illégale de l’Ukraine.

Le Dr Paul Butt, directeur général de l’Agence spatiale britannique, a déclaré : « Le vaisseau spatial Rosalind Franklin, construit au Royaume-Uni, est véritablement une technologie de pointe aux frontières de l’exploration spatiale. » « Il est fantastique que des experts britanniques puissent également fournir un instrument clé pour cette mission, grâce au financement de l’Agence spatiale britannique.

« En plus de tirer parti de la technologie spatiale britannique de classe mondiale pour faire progresser notre compréhension de Mars et de sa capacité à héberger la vie, ce financement supplémentaire renforcera la collaboration au sein du secteur spatial et de l’économie britannique en croissance rapide. »

La dernière annonce porte l’investissement total du gouvernement dans Rosalind Franklin, par l’intermédiaire de l’Agence spatiale britannique, à 377 millions de livres sterling, a souligné le ministère britannique de la Science, de l’Innovation et de la Technologie (DSIT).

Le véhicule devait initialement être lancé en septembre 2022 depuis le Kazakhstan, mais la guerre ukraino-russe est intervenue.

Image : Université d’Aberystwyth/Équipe d’instruments Enfys

Voir également: Le rover Rosalind Franklin avance vers Mars en vue de son lancement en septembre

Continue Reading
Click to comment

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

science

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Published

on

Comment des physiciens américains ont joué à Dieu et ont créé un nouvel élément appelé Livermorium à l’aide d’un faisceau de particules de titane

Un scientifique du Lawrence Berkeley National Laboratory travaille sur un dispositif de séparation lors d’une expérience. Crédit image : Laboratoire national Lawrence Berkeley

Une équipe de scientifiques et de chercheurs du Lawrence Berkeley National Laboratory en Californie a récemment annoncé une réalisation révolutionnaire : la création du Livemorium, ou élément 116, à l’aide d’un faisceau de particules de titane.

C’est la première fois qu’un hépatique est fabriqué de cette manière, rapprochant les chercheurs de l’insaisissable « îlot de stabilité », où les éléments très lourds sont censés avoir une durée de vie plus longue, ce qui les rend plus faciles à étudier. Plus important encore, c’est la première fois qu’un objet extrêmement lourd est fabriqué de cette manière par des humains.

Rainer Kröcken, directeur des sciences nucléaires au Berkeley Lab, a exprimé son optimisme quant à la découverte, soulignant la nature collaborative de l’expérience. Il a déclaré que la production de l’élément 120, la prochaine cible, prendrait beaucoup plus de temps mais semblait désormais possible. Annoncé lors de la conférence Nuclear Structure 2024, l’article sera bientôt disponible sur le référentiel de prépublications arXiv et sera soumis à la revue Physical Review Letters.

Utilisation innovante d’une poutre en titane pour créer l’élément 116
Dans leur expérience, les scientifiques ont utilisé un faisceau de titane-50, un isotope spécifique, pour générer du Livemorium, ce qui en fait l’élément le plus lourd créé à ce jour au laboratoire de Berkeley. Ce laboratoire a une riche histoire de découverte d’éléments, qui a contribué à l’identification de 16 éléments allant du technétium (43) au seaborgium (106).

READ  Off - Une fusée de la NASA décolle pour une mission lunaire

Jacqueline Gates, qui a dirigé le dernier effort, a exprimé sa confiance dans les résultats, notant que les chances que les résultats soient une anomalie statistique sont très faibles. Le processus impliquait de chauffer le titane à environ 3 000 °F (1 649 °C) jusqu’à ce qu’il se vaporise. L’équipe a ensuite bombardé le titane vaporisé avec des micro-ondes, en enlevant 22 électrons et en préparant les ions pour l’accélération dans un cyclotron de 88 pouces au laboratoire de Berkeley.

Les ions de titane accélérés sont dirigés vers une cible de plutonium, des milliards d’ions frappant la cible chaque seconde. Ce bombardement intense a finalement créé deux atomes de Livermorium sur une période de 22 jours. L’utilisation du titane à cette fin représente une nouvelle technologie pour synthétiser des éléments plus lourds, car les éléments précédents de cette gamme, de 114 à 118, avaient été synthétisés à l’aide d’un faisceau de calcium 48.

Jennifer Burr, physicienne nucléaire au groupe des éléments lourds du Berkeley Lab, a souligné l’importance de cette méthode. La production de l’élément 116 à partir de titane valide cette nouvelle approche, ouvrant la voie à de futures expériences visant à produire des éléments plus lourds, comme l’élément 120.

Trouver l’article 120
Le succès de la création de l’élément 116 a ouvert la voie au prochain objectif ambitieux de l’équipe : créer l’élément 120. S’il est atteint, l’élément 120 sera l’atome le plus lourd jamais créé et fera partie de « l’îlot de stabilité », un groupe théorique d’éléments super-lourds de qui devrait être plus long que ceux découverts jusqu’à présent.

READ  Les bactéries intestinales du panda géant vous aident à rester rassasié malgré un régime à base de bambou

Le laboratoire prévoit de commencer à tenter de créer l’élément 120 en 2025. Le processus devrait prendre plusieurs années, reflétant la complexité et les défis inhérents à cette recherche de pointe. Les physiciens explorent les limites du tableau périodique, s’efforçant de repousser les limites de la connaissance et de la compréhension humaines en explorant les limites de la stabilité atomique.

Cette réalisation majeure démontre non seulement la créativité des scientifiques du Berkeley Lab, mais ouvre également la voie à de futures découvertes dans le domaine des éléments super-lourds, qui pourraient ouvrir la voie à de nouvelles connaissances sur la nature fondamentale de la matière.

Retrouvez-nous sur YouTube

Participer

Continue Reading

science

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

Published

on

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

L’Institut des sciences spatiales et cosmiques commence une étude coordonnée de l’atmosphère autour des exoplanètes naines de type M

La directrice de l’Institut des sciences spatiales et cosmiques, la Dre Jennifer Lutz, a accepté la recommandation principale du groupe de travail sur les initiatives exoplanétaires stratégiques et a décidé de procéder à une étude à grande échelle des exoplanètes naines rocheuses de type M.

Le programme utilisera environ 500 heures du temps discrétionnaire du directeur sur le télescope spatial James Webb pour rechercher l’atmosphère de plus d’une douzaine de systèmes proches.

Près de 250 observations ultraviolettes en orbite avec le télescope spatial Hubble seront utilisées pour déterminer l’activité des étoiles hôtes. Les observations seront effectuées par une équipe de direction du Space Science Institute dirigée par le Dr Nestor Espinosa et soutenue par le Dr Hannah Diamond Lowe en tant qu’équipe adjointe.

L’Institut des sciences spatiales et cosmiques emploie également un comité consultatif scientifique externe pour donner des conseils sur tous les aspects du programme, y compris la sélection des cibles, la vérification des données et les interactions communautaires équitables. Les membres du comité consultatif scientifique seront représentatifs de la communauté exoplanétaire au sens large, couvrant un large éventail d’affiliations institutionnelles et d’étapes de carrière.

Le Space Science Institute annoncera bientôt la possibilité de soumettre des candidatures, y compris des auto-nominations. La contribution de la communauté sera sollicitée sur la liste des cibles ; Les plans d’observation seront publiés bien avant la date limite de GWebb IV.

Rapport du groupe de travail sur les initiatives exoplanétaires stratégiques avec le télescope spatial Hubble et le télescope spatial James Webb

READ  Cet astéroïde géocroiseur pourrait être un gros morceau sorti de la lune

Astrobiologie

Membre de l’Explorers Club, ancien gestionnaire de charge utile de la Station spatiale de la NASA/biologiste spatial, homme de plein air, journaliste, ancien grimpeur, synesthésie, mélange de Na’vi, Jedi, Freeman et bouddhiste, langue des signes américaine, camp de base de l’île Devon et vétéran de l’Everest, (il /lui) 🖖🏻

Continue Reading

science

Découvrir les origines des cratères des dômes de Ganymède et Callisto

Published

on

Découvrir les origines des cratères des dômes de Ganymède et Callisto
Les articles des éditeurs sont des résumés de recherches récentes publiées par les éditeurs des revues de l’American Geophysical Union.
source: Journal de recherche géophysique : Planètes

le En voyageant Le vaisseau spatial a été le premier à observer les cratères du dôme central sur les lunes glacées Ganymède Et Callisto en 1979. Ces cratères étaient remarquables car ils étaient uniques à ces mondes glacés et étaient susceptibles de révéler des informations importantes sur la formation des lunes glacées et leur évolution interne.

Les dômes centraux sont plus larges, plus lisses et plus arrondis que les cratères centraux traditionnels (tels que ceux que l’on trouve sur la Lune ou sur d’autres corps rocheux). Ils ne se produisent également que dans des cratères de plus de 60 km de long et sont généralement plus grands qu’une autre classe de cratères appelés cratères centraux.

Ces indices ont conduit Kosi et coll. [2024] Nous utilisons un modèle numérique de l’évolution des cratères centraux en cratères à dôme central. La chaleur restante de l’impact lui-même est concentrée sous le cratère central, ce qui rend cette glace plus chaude et plus mobile que la glace environnante. Cette glace centrale en mouvement peut s’écouler et s’élever plus facilement en réponse au champ de pression créé par la topographie du cratère. La modélisation suggère que les dômes centraux pourraient se former relativement rapidement (dans un délai de 10 millions d’années) lorsqu’il y a un flux de chaleur global suffisant en provenance de Ganymède ou de Callisto.

Citation : Caussi, ML, Dombard, AJ, Korycansky, DG, White, OL, Moore, JM et Schenk, PM (2024). Les cratères de dôme sur Ganymède et Callisto peuvent s’être formés par relaxation topographique des cratères aidé par la chaleur d’impact résiduelle. Journal de recherche géophysique : Planètes129, e2023JE008258. https://doi.org/10.1029/2023JE008258

—Kelsey Singer, rédactrice adjointe, JGR : Planètes

Texte © 2024. Les auteurs. CC BY-NC-ND 3.0
Sauf indication contraire, les images sont soumises au droit d’auteur. La réutilisation est interdite sans l’autorisation expresse du titulaire des droits d’auteur.

READ  Lundi, SpaceX se réjouit de lancer les missions Starlink et Transporter-8

Continue Reading

Trending

Copyright © 2023